Lisbon Accounting and Business School – Polytechnic University of Lisbon
These slides are a free translation and adaptation from the slide deck for Estatística I by Prof. Sandra Custódio and Prof. Teresa Ferreira from the Lisbon Accounting and Business School - Polytechnical University of Lisbon.
We studied a couple of ways in which we could categorize the random variables.
One of these classifications was discrete and continuous random variables.
We will start by focusing in the first family of r.v.s
According to the type of event we are measuring, we can do even better, and cluster together random variables that behave similarly.
We will define families of statistical distributions. Knowing to which statistical distribution our random variable belongs, will endow us with a set of tools to deal with them adequately.
The Bernoulli experiment consists in a random experiment with the following features:
This process has even further these three characteristics:
This is process has a binary outcome: Success (1) - Failure (0).
The random variable \(X\) follows a Bernoulli distribution with parameter \(p \in [0,1]\), \(X\sim Ber(1,p)\) if its probability function is given by: \[P(X=x)=f_X(x)=\begin{cases}p^x(1-p)^{1-x} & x\in\{0,1\}\\ 0 & otherwise\end{cases}\]
It is trivial to check that \(P(X=1)=p\) and \(P(X=0)=1-p\).
The first two moments of the distribution (mean and variance) are given by:
In summary, Bernoulli’s tries to model what is the probability of success or failure in a single independent trial.
This distribution, is a generalization of Bernoulli’s.
In this case, it might be better to start from the summary to stress the difference with Bernoulli’s:
The Binomial distribution answers what is the probability that, after \(n\) independent fail-success trials, in any order, for example, you succeeded \(m\leq n\) times.
A random variable \(X\) follows a Binomial distribution, \(X\sim Bin(n,p)\) if its probability function \(P(X=x)\) is: \[ f_X(x)=\begin{cases}\binom{n}{x}p^x(1-p)^{1-x} & x=0,1,...,n\\ 0 & otherwise\end{cases} \]
Note that if we change \(n\) or \(p\) we would get another binomial distribution, i.e. \(B(n,p)\neq B(m,r)\) if either \(n\neq m\) or \(p\neq r\).
Bernoulli is a Binomial distribution with \(n=1\).
Computing this probability can become very laborious, even for small values for \(n\). This can be solved thanks to:
The first two moments of the distribution are found as:
Let \(k\) independent random variables \(X_i\) with \(i=1,2,..., k\), where \(X_i\sim Bin(x_i,n_i,p)\), then
\[ \begin{aligned} \text{if }S_k&=X_1+X_2+...+X_k=\sum_{i=1}^k X_i \\ S_k&\sim Bin\left(s_k, n=\sum_{i=1}^k n_i, p\right) \end{aligned} \]
Using the tables for the binomial distribution, or the calculator, find the value of the following probabilities:
The SNS (Portugal’s National Health Service) has said that the probability of an individual carrying a specific gene, that triggers a certain disease is 0.1. In the city of Porto, 10 individuals were randomly selected for a study, while 8 individuals were randomly chosen in Lisbon for the same purpose. Assess the veracity of the following sentence:
The probability of, in Lisbon, 2 individuals carrying the gene, knowing that between Porto and Lisbon only 5 individuals were found to carry that gene, is 0.2941.
Let \(X\sim Bin(10,0.1)\) (for Porto) and \(Y\sim Bin(8,0.1)\) (for Lisbon). Then \(X+Y\sim Bin(18,0.1)\).
\[ \begin{aligned} P(Y=2|X+Y=5)&=\frac{P(Y=2, X+Y=5)}{P(X+Y=5)}\\ &=\frac{P(Y=2, X=3)}{P(X+Y=5)}\\ &=\frac{P(Y=2)P(X=3)}{P(X+Y=5)} \end{aligned} \]
Using the tables we have \(P(Y=2)=0.1488\), \(P(X=3)=0.0574\), \(P(X+Y=5)=0.0218\), and therefore \(P(Y=2|X+Y=5)=0.392\). ❌ False
Suppose you have a population with size \(N\), from where \(M\) elements have some characteristic, and therefore \(N-M\) do not. From that sample, we draw randomly a sample of size \(n\), without replacement, and we would like to know, from this sample, how many have the characteristic we mentioned.
Given we are not replacing the elements we put in our sample, the events here are not independent!
In this case the r.v. \(X\) would be how many elements from our sample have the referred characteristic. \(X\sim Hypergeometric (N,M,n)\) if its probability distribution function \(P(X=x)\) is:
\[ f_X(x)=\frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}} \]
where \(max(0,M+n-N)\leq x \leq min(M,n)\)
The first two moments of the distribution are found as:
Let \(X\sim Hypergeometric(N,M,n)\). If \(N>>n\) then the change in the population is very small, and then the draws approximate independent draws (population is very similar after a draw). As a rule of thumb if \(\frac{n}{N}\leq 0.1\) or if the sample size is less than 10% of the population, we can approximate the Hypergeometric with the Binomial.
\[X\sim Hypergeom(N,M,n)\leftrightarrow X\approx Bin\left(n,p=\frac{M}{N}\right)\]
The smaller \(\frac{n}{N}\) the better the approximation.
Consider a succession of Bernoulli trials, and let \(X\) the r.v. how many trials you need until observing the first success. This is a r.v. because there might be situations when you get success at your first trial, or second, etc. You cannot anticipate this.
\(X\sim Geo(p)\) if its probability distribution function \(P(X=x)\) is given by:
\[f_X(x)=p^x(1-p)^{1-x}\ ,\ x\in\{1,2,...\},\ p\in[0,1]\]
The first two moments of the distribution are found as:
There is a special feature of this distribution, it is said it “lacks memory” in the following sense. Let \(s>t>0\)
\[ \begin{aligned} P(X>s|X>t)&=\frac{P(X>s \wedge X>t)}{P(X>t)}=\frac{P(X>s)}{P(X>t)}\\ &=\frac{1-F(s)}{1-F(t)}=\frac{(1-p)^s}{(1-p)^t}=(1-p)^{s-t}\\ P(X>s-t)&=1-P(x\leq s-t)=1-F(x)\\ &=(1-p)^{s-t} \end{aligned} \]
Distribution | r.v. \(X\) | Parameter |
---|---|---|
Binomial | # Success | # Trials |
Geometric | # Trials | 1st Success |
A company specialized in sport footwear, imports a share of the material that is packed in boxes of 1000 units. To avoid counterfeiting, in each box 5 products are randomly selected, and the whole box is returned if one of these 5 products raises suspicions.
This distribution is associated with a process of counting, a Poisson process.
Examples:
You can count something in a time frame, or a particular region.
The Poisson process has the following features:
The r.v. \(X\) follows a Poisson distribution if \(X\sim Poi(\lambda)\) if its probability distribution function \(P(X=x)\) is given by:
\[ f_X(x)=\begin{cases} \frac{e^{-\lambda}\lambda^x}{x!} & x=0,1,... \\ 0 & otherwise \end{cases} \]
with \(\lambda>0\), which represents the average number of events in a given time slot or region.
The first two moments of the distribution are found as:
Let \(k\) r.v.s \(X_i\) with \(i=1,2,...,k\), independent, where \(X_i\sim Poi(\lambda_i)\). Let
\[S_k=X_1+...+X_k=\sum_{i=1}^k X_i\]
Then \(S_k\sim Poi\left(\Sigma_{i=1}^k\lambda_i\right)\)
Let \(X\sim Bin(n,p)\). If \(n>>1>>p\), i.e. if this is a very rare event (very low success probability) in a very large sample, you can approximate this with a Poisson distribution, where \(\lambda=np\).
\(X\sim Bin(x,n,p)\leftrightarrow\ X\approx Poi(x,\lambda=np)\)
As a rule of thumb, do not approximate if \(p\in[0.1,0.9]\) or if \(n\leq 20\).
Find the value of the following probabilities, using the Poisson table
The number of patients arriving daily to the ICU in a hospital, follows a Poisson process with mean 4. The ICU has capacity of 6 patients, the others, are derived to the nearest hospital. Assess the validity of the following sentences:
x | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.9500 | 0.9000 | 0.8500 | 0.8000 | 0.7500 | 0.7000 | 0.6500 | 0.6000 | 0.5500 | 0.5000 |
1 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
x | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.9025 | 0.8100 | 0.7225 | 0.6400 | 0.5625 | 0.4900 | 0.4225 | 0.3600 | 0.3025 | 0.2500 |
1 | 0.9975 | 0.9900 | 0.9775 | 0.9600 | 0.9375 | 0.9100 | 0.8775 | 0.8400 | 0.7975 | 0.7500 |
2 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
x | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.8574 | 0.7290 | 0.6141 | 0.5120 | 0.4219 | 0.3430 | 0.2746 | 0.2160 | 0.1664 | 0.1250 |
1 | 0.9928 | 0.9720 | 0.9392 | 0.8960 | 0.8438 | 0.7840 | 0.7183 | 0.6480 | 0.5748 | 0.5000 |
2 | 0.9999 | 0.9990 | 0.9966 | 0.9920 | 0.9844 | 0.9730 | 0.9571 | 0.9360 | 0.9089 | 0.8750 |
3 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
x | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.8145 | 0.6561 | 0.5220 | 0.4096 | 0.3164 | 0.2401 | 0.1785 | 0.1296 | 0.0915 | 0.0625 |
1 | 0.9860 | 0.9477 | 0.8905 | 0.8192 | 0.7383 | 0.6517 | 0.5630 | 0.4752 | 0.3910 | 0.3125 |
2 | 0.9995 | 0.9963 | 0.9880 | 0.9728 | 0.9492 | 0.9163 | 0.8735 | 0.8208 | 0.7585 | 0.6875 |
3 | 1.0000 | 0.9999 | 0.9995 | 0.9984 | 0.9961 | 0.9919 | 0.9850 | 0.9744 | 0.9590 | 0.9375 |
4 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
x | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.7738 | 0.5905 | 0.4437 | 0.3277 | 0.2373 | 0.1681 | 0.1160 | 0.0778 | 0.0503 | 0.0312 |
1 | 0.9774 | 0.9185 | 0.8352 | 0.7373 | 0.6328 | 0.5282 | 0.4284 | 0.3370 | 0.2562 | 0.1875 |
2 | 0.9988 | 0.9914 | 0.9734 | 0.9421 | 0.8965 | 0.8369 | 0.7648 | 0.6826 | 0.5931 | 0.5000 |
3 | 1.0000 | 0.9995 | 0.9978 | 0.9933 | 0.9844 | 0.9692 | 0.9460 | 0.9130 | 0.8688 | 0.8125 |
4 | 1.0000 | 1.0000 | 0.9999 | 0.9997 | 0.9990 | 0.9976 | 0.9947 | 0.9898 | 0.9815 | 0.9688 |
5 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
x | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.7351 | 0.5314 | 0.3771 | 0.2621 | 0.1780 | 0.1176 | 0.0754 | 0.0467 | 0.0277 | 0.0156 |
1 | 0.9672 | 0.8857 | 0.7765 | 0.6554 | 0.5339 | 0.4202 | 0.3191 | 0.2333 | 0.1636 | 0.1094 |
2 | 0.9978 | 0.9842 | 0.9527 | 0.9011 | 0.8306 | 0.7443 | 0.6471 | 0.5443 | 0.4415 | 0.3438 |
3 | 0.9999 | 0.9987 | 0.9941 | 0.9830 | 0.9624 | 0.9295 | 0.8826 | 0.8208 | 0.7447 | 0.6562 |
4 | 1.0000 | 0.9999 | 0.9996 | 0.9984 | 0.9954 | 0.9891 | 0.9777 | 0.9590 | 0.9308 | 0.8906 |
5 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9998 | 0.9993 | 0.9982 | 0.9959 | 0.9917 | 0.9844 |
6 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
x | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.6983 | 0.4783 | 0.3206 | 0.2097 | 0.1335 | 0.0824 | 0.0490 | 0.0280 | 0.0152 | 0.0078 |
1 | 0.9556 | 0.8503 | 0.7166 | 0.5767 | 0.4449 | 0.3294 | 0.2338 | 0.1586 | 0.1024 | 0.0625 |
2 | 0.9962 | 0.9743 | 0.9262 | 0.8520 | 0.7564 | 0.6471 | 0.5323 | 0.4199 | 0.3164 | 0.2266 |
3 | 0.9998 | 0.9973 | 0.9879 | 0.9667 | 0.9294 | 0.8740 | 0.8002 | 0.7102 | 0.6083 | 0.5000 |
4 | 1.0000 | 0.9998 | 0.9988 | 0.9953 | 0.9871 | 0.9712 | 0.9444 | 0.9037 | 0.8471 | 0.7734 |
5 | 1.0000 | 1.0000 | 0.9999 | 0.9996 | 0.9987 | 0.9962 | 0.9910 | 0.9812 | 0.9643 | 0.9375 |
6 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9998 | 0.9994 | 0.9984 | 0.9963 | 0.9922 |
7 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
x | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.6634 | 0.4305 | 0.2725 | 0.1678 | 0.1001 | 0.0576 | 0.0319 | 0.0168 | 0.0084 | 0.0039 |
1 | 0.9428 | 0.8131 | 0.6572 | 0.5033 | 0.3671 | 0.2553 | 0.1691 | 0.1064 | 0.0632 | 0.0352 |
2 | 0.9942 | 0.9619 | 0.8948 | 0.7969 | 0.6785 | 0.5518 | 0.4278 | 0.3154 | 0.2201 | 0.1445 |
3 | 0.9996 | 0.9950 | 0.9786 | 0.9437 | 0.8862 | 0.8059 | 0.7064 | 0.5941 | 0.4770 | 0.3633 |
4 | 1.0000 | 0.9996 | 0.9971 | 0.9896 | 0.9727 | 0.9420 | 0.8939 | 0.8263 | 0.7396 | 0.6367 |
5 | 1.0000 | 1.0000 | 0.9998 | 0.9988 | 0.9958 | 0.9887 | 0.9747 | 0.9502 | 0.9115 | 0.8555 |
6 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9996 | 0.9987 | 0.9964 | 0.9915 | 0.9819 | 0.9648 |
7 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9998 | 0.9993 | 0.9983 | 0.9961 |
8 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
x | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.6302 | 0.3874 | 0.2316 | 0.1342 | 0.0751 | 0.0404 | 0.0207 | 0.0101 | 0.0046 | 0.0020 |
1 | 0.9288 | 0.7748 | 0.5995 | 0.4362 | 0.3003 | 0.1960 | 0.1211 | 0.0705 | 0.0385 | 0.0195 |
2 | 0.9916 | 0.9470 | 0.8591 | 0.7382 | 0.6007 | 0.4628 | 0.3373 | 0.2318 | 0.1495 | 0.0898 |
3 | 0.9994 | 0.9917 | 0.9661 | 0.9144 | 0.8343 | 0.7297 | 0.6089 | 0.4826 | 0.3614 | 0.2539 |
4 | 1.0000 | 0.9991 | 0.9944 | 0.9804 | 0.9511 | 0.9012 | 0.8283 | 0.7334 | 0.6214 | 0.5000 |
5 | 1.0000 | 0.9999 | 0.9994 | 0.9969 | 0.9900 | 0.9747 | 0.9464 | 0.9006 | 0.8342 | 0.7461 |
6 | 1.0000 | 1.0000 | 1.0000 | 0.9997 | 0.9987 | 0.9957 | 0.9888 | 0.9750 | 0.9502 | 0.9102 |
7 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9996 | 0.9986 | 0.9962 | 0.9909 | 0.9805 |
8 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9997 | 0.9992 | 0.9980 |
9 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
x | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.5987 | 0.3487 | 0.1969 | 0.1074 | 0.0563 | 0.0282 | 0.0135 | 0.0060 | 0.0025 | 0.0010 |
1 | 0.9139 | 0.7361 | 0.5443 | 0.3758 | 0.2440 | 0.1493 | 0.0860 | 0.0464 | 0.0233 | 0.0107 |
2 | 0.9885 | 0.9298 | 0.8202 | 0.6778 | 0.5256 | 0.3828 | 0.2616 | 0.1673 | 0.0996 | 0.0547 |
3 | 0.9990 | 0.9872 | 0.9500 | 0.8791 | 0.7759 | 0.6496 | 0.5138 | 0.3823 | 0.2660 | 0.1719 |
4 | 0.9999 | 0.9984 | 0.9901 | 0.9672 | 0.9219 | 0.8497 | 0.7515 | 0.6331 | 0.5044 | 0.3770 |
5 | 1.0000 | 0.9999 | 0.9986 | 0.9936 | 0.9803 | 0.9527 | 0.9051 | 0.8338 | 0.7384 | 0.6230 |
6 | 1.0000 | 1.0000 | 0.9999 | 0.9991 | 0.9965 | 0.9894 | 0.9740 | 0.9452 | 0.8980 | 0.8281 |
7 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9996 | 0.9984 | 0.9952 | 0.9877 | 0.9726 | 0.9453 |
8 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9995 | 0.9983 | 0.9955 | 0.9893 |
9 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9997 | 0.9990 |
10 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
x | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.5688 | 0.3138 | 0.1673 | 0.0859 | 0.0422 | 0.0198 | 0.0088 | 0.0036 | 0.0014 | 0.0005 |
1 | 0.8981 | 0.6974 | 0.4922 | 0.3221 | 0.1971 | 0.1130 | 0.0606 | 0.0302 | 0.0139 | 0.0059 |
2 | 0.9848 | 0.9104 | 0.7788 | 0.6174 | 0.4552 | 0.3127 | 0.2001 | 0.1189 | 0.0652 | 0.0327 |
3 | 0.9984 | 0.9815 | 0.9306 | 0.8389 | 0.7133 | 0.5696 | 0.4256 | 0.2963 | 0.1911 | 0.1133 |
4 | 0.9999 | 0.9972 | 0.9841 | 0.9496 | 0.8854 | 0.7897 | 0.6683 | 0.5328 | 0.3971 | 0.2744 |
5 | 1.0000 | 0.9997 | 0.9973 | 0.9883 | 0.9657 | 0.9218 | 0.8513 | 0.7535 | 0.6331 | 0.5000 |
6 | 1.0000 | 1.0000 | 0.9997 | 0.9980 | 0.9924 | 0.9784 | 0.9499 | 0.9006 | 0.8262 | 0.7256 |
7 | 1.0000 | 1.0000 | 1.0000 | 0.9998 | 0.9988 | 0.9957 | 0.9878 | 0.9707 | 0.9390 | 0.8867 |
8 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9994 | 0.9980 | 0.9941 | 0.9852 | 0.9673 |
9 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9998 | 0.9993 | 0.9978 | 0.9941 |
10 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9998 | 0.9995 |
11 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
x | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.5404 | 0.2824 | 0.1422 | 0.0687 | 0.0317 | 0.0138 | 0.0057 | 0.0022 | 0.0008 | 0.0002 |
1 | 0.8816 | 0.6590 | 0.4435 | 0.2749 | 0.1584 | 0.0850 | 0.0424 | 0.0196 | 0.0083 | 0.0032 |
2 | 0.9804 | 0.8891 | 0.7358 | 0.5583 | 0.3907 | 0.2528 | 0.1513 | 0.0834 | 0.0421 | 0.0193 |
3 | 0.9978 | 0.9744 | 0.9078 | 0.7946 | 0.6488 | 0.4925 | 0.3467 | 0.2253 | 0.1345 | 0.0730 |
4 | 0.9998 | 0.9957 | 0.9761 | 0.9274 | 0.8424 | 0.7237 | 0.5833 | 0.4382 | 0.3044 | 0.1938 |
5 | 1.0000 | 0.9995 | 0.9954 | 0.9806 | 0.9456 | 0.8822 | 0.7873 | 0.6652 | 0.5269 | 0.3872 |
6 | 1.0000 | 0.9999 | 0.9993 | 0.9961 | 0.9857 | 0.9614 | 0.9154 | 0.8418 | 0.7393 | 0.6128 |
7 | 1.0000 | 1.0000 | 0.9999 | 0.9994 | 0.9972 | 0.9905 | 0.9745 | 0.9427 | 0.8883 | 0.8062 |
8 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9996 | 0.9983 | 0.9944 | 0.9847 | 0.9644 | 0.9270 |
9 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9998 | 0.9992 | 0.9972 | 0.9921 | 0.9807 |
10 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9997 | 0.9989 | 0.9968 |
11 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9998 |
12 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
x | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.5133 | 0.2542 | 0.1209 | 0.0550 | 0.0238 | 0.0097 | 0.0037 | 0.0013 | 0.0004 | 0.0001 |
1 | 0.8646 | 0.6213 | 0.3983 | 0.2336 | 0.1267 | 0.0637 | 0.0296 | 0.0126 | 0.0049 | 0.0017 |
2 | 0.9755 | 0.8661 | 0.6920 | 0.5017 | 0.3326 | 0.2025 | 0.1132 | 0.0579 | 0.0269 | 0.0112 |
3 | 0.9969 | 0.9658 | 0.8820 | 0.7473 | 0.5843 | 0.4206 | 0.2783 | 0.1686 | 0.0929 | 0.0461 |
4 | 0.9997 | 0.9935 | 0.9658 | 0.9009 | 0.7940 | 0.6543 | 0.5005 | 0.3530 | 0.2279 | 0.1334 |
5 | 1.0000 | 0.9991 | 0.9925 | 0.9700 | 0.9198 | 0.8346 | 0.7159 | 0.5744 | 0.4268 | 0.2905 |
6 | 1.0000 | 0.9999 | 0.9987 | 0.9930 | 0.9757 | 0.9376 | 0.8705 | 0.7712 | 0.6437 | 0.5000 |
7 | 1.0000 | 1.0000 | 0.9998 | 0.9988 | 0.9944 | 0.9818 | 0.9538 | 0.9023 | 0.8212 | 0.7095 |
8 | 1.0000 | 1.0000 | 1.0000 | 0.9998 | 0.9990 | 0.9960 | 0.9874 | 0.9679 | 0.9302 | 0.8666 |
9 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9993 | 0.9975 | 0.9922 | 0.9797 | 0.9539 |
10 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9997 | 0.9987 | 0.9959 | 0.9888 |
11 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9995 | 0.9983 |
12 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 |
13 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
x | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.4877 | 0.2288 | 0.1028 | 0.0440 | 0.0178 | 0.0068 | 0.0024 | 0.0008 | 0.0002 | 0.0001 |
1 | 0.8470 | 0.5846 | 0.3567 | 0.1979 | 0.1010 | 0.0475 | 0.0205 | 0.0081 | 0.0029 | 0.0009 |
2 | 0.9699 | 0.8416 | 0.6479 | 0.4481 | 0.2811 | 0.1608 | 0.0839 | 0.0398 | 0.0170 | 0.0065 |
3 | 0.9958 | 0.9559 | 0.8535 | 0.6982 | 0.5213 | 0.3552 | 0.2205 | 0.1243 | 0.0632 | 0.0287 |
4 | 0.9996 | 0.9908 | 0.9533 | 0.8702 | 0.7415 | 0.5842 | 0.4227 | 0.2793 | 0.1672 | 0.0898 |
5 | 1.0000 | 0.9985 | 0.9885 | 0.9561 | 0.8883 | 0.7805 | 0.6405 | 0.4859 | 0.3373 | 0.2120 |
6 | 1.0000 | 0.9998 | 0.9978 | 0.9884 | 0.9617 | 0.9067 | 0.8164 | 0.6925 | 0.5461 | 0.3953 |
7 | 1.0000 | 1.0000 | 0.9997 | 0.9976 | 0.9897 | 0.9685 | 0.9247 | 0.8499 | 0.7414 | 0.6047 |
8 | 1.0000 | 1.0000 | 1.0000 | 0.9996 | 0.9978 | 0.9917 | 0.9757 | 0.9417 | 0.8811 | 0.7880 |
9 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9997 | 0.9983 | 0.9940 | 0.9825 | 0.9574 | 0.9102 |
10 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9998 | 0.9989 | 0.9961 | 0.9886 | 0.9713 |
11 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9994 | 0.9978 | 0.9935 |
12 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9997 | 0.9991 |
13 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 |
14 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
x | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.4633 | 0.2059 | 0.0874 | 0.0352 | 0.0134 | 0.0047 | 0.0016 | 0.0005 | 0.0001 | 0.0000 |
1 | 0.8290 | 0.5490 | 0.3186 | 0.1671 | 0.0802 | 0.0353 | 0.0142 | 0.0052 | 0.0017 | 0.0005 |
2 | 0.9638 | 0.8159 | 0.6042 | 0.3980 | 0.2361 | 0.1268 | 0.0617 | 0.0271 | 0.0107 | 0.0037 |
3 | 0.9945 | 0.9444 | 0.8227 | 0.6482 | 0.4613 | 0.2969 | 0.1727 | 0.0905 | 0.0424 | 0.0176 |
4 | 0.9994 | 0.9873 | 0.9383 | 0.8358 | 0.6865 | 0.5155 | 0.3519 | 0.2173 | 0.1204 | 0.0592 |
5 | 0.9999 | 0.9978 | 0.9832 | 0.9389 | 0.8516 | 0.7216 | 0.5643 | 0.4032 | 0.2608 | 0.1509 |
6 | 1.0000 | 0.9997 | 0.9964 | 0.9819 | 0.9434 | 0.8689 | 0.7548 | 0.6098 | 0.4522 | 0.3036 |
7 | 1.0000 | 1.0000 | 0.9994 | 0.9958 | 0.9827 | 0.9500 | 0.8868 | 0.7869 | 0.6535 | 0.5000 |
8 | 1.0000 | 1.0000 | 0.9999 | 0.9992 | 0.9958 | 0.9848 | 0.9578 | 0.9050 | 0.8182 | 0.6964 |
9 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9992 | 0.9963 | 0.9876 | 0.9662 | 0.9231 | 0.8491 |
10 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9993 | 0.9972 | 0.9907 | 0.9745 | 0.9408 |
11 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9995 | 0.9981 | 0.9937 | 0.9824 |
12 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9997 | 0.9989 | 0.9963 |
13 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9995 |
14 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
15 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
x | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.4401 | 0.1853 | 0.0743 | 0.0281 | 0.0100 | 0.0033 | 0.0010 | 0.0003 | 0.0001 | 0.0000 |
1 | 0.8108 | 0.5147 | 0.2839 | 0.1407 | 0.0635 | 0.0261 | 0.0098 | 0.0033 | 0.0010 | 0.0003 |
2 | 0.9571 | 0.7892 | 0.5614 | 0.3518 | 0.1971 | 0.0994 | 0.0451 | 0.0183 | 0.0066 | 0.0021 |
3 | 0.9930 | 0.9316 | 0.7899 | 0.5981 | 0.4050 | 0.2459 | 0.1339 | 0.0651 | 0.0281 | 0.0106 |
4 | 0.9991 | 0.9830 | 0.9209 | 0.7982 | 0.6302 | 0.4499 | 0.2892 | 0.1666 | 0.0853 | 0.0384 |
5 | 0.9999 | 0.9967 | 0.9765 | 0.9183 | 0.8103 | 0.6598 | 0.4900 | 0.3288 | 0.1976 | 0.1051 |
6 | 1.0000 | 0.9995 | 0.9944 | 0.9733 | 0.9204 | 0.8247 | 0.6881 | 0.5272 | 0.3660 | 0.2272 |
7 | 1.0000 | 0.9999 | 0.9989 | 0.9930 | 0.9729 | 0.9256 | 0.8406 | 0.7161 | 0.5629 | 0.4018 |
8 | 1.0000 | 1.0000 | 0.9998 | 0.9985 | 0.9925 | 0.9743 | 0.9329 | 0.8577 | 0.7441 | 0.5982 |
9 | 1.0000 | 1.0000 | 1.0000 | 0.9998 | 0.9984 | 0.9929 | 0.9771 | 0.9417 | 0.8759 | 0.7728 |
10 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9997 | 0.9984 | 0.9938 | 0.9809 | 0.9514 | 0.8949 |
11 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9997 | 0.9987 | 0.9951 | 0.9851 | 0.9616 |
12 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9998 | 0.9991 | 0.9965 | 0.9894 |
13 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9994 | 0.9979 |
14 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9997 |
15 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
16 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
x | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.4181 | 0.1668 | 0.0631 | 0.0225 | 0.0075 | 0.0023 | 0.0007 | 0.0002 | 0.0000 | 0.0000 |
1 | 0.7922 | 0.4818 | 0.2525 | 0.1182 | 0.0501 | 0.0193 | 0.0067 | 0.0021 | 0.0006 | 0.0001 |
2 | 0.9497 | 0.7618 | 0.5198 | 0.3096 | 0.1637 | 0.0774 | 0.0327 | 0.0123 | 0.0041 | 0.0012 |
3 | 0.9912 | 0.9174 | 0.7556 | 0.5489 | 0.3530 | 0.2019 | 0.1028 | 0.0464 | 0.0184 | 0.0064 |
4 | 0.9988 | 0.9779 | 0.9013 | 0.7582 | 0.5739 | 0.3887 | 0.2348 | 0.1260 | 0.0596 | 0.0245 |
5 | 0.9999 | 0.9953 | 0.9681 | 0.8943 | 0.7653 | 0.5968 | 0.4197 | 0.2639 | 0.1471 | 0.0717 |
6 | 1.0000 | 0.9992 | 0.9917 | 0.9623 | 0.8929 | 0.7752 | 0.6188 | 0.4478 | 0.2902 | 0.1662 |
7 | 1.0000 | 0.9999 | 0.9983 | 0.9891 | 0.9598 | 0.8954 | 0.7872 | 0.6405 | 0.4743 | 0.3145 |
8 | 1.0000 | 1.0000 | 0.9997 | 0.9974 | 0.9876 | 0.9597 | 0.9006 | 0.8011 | 0.6626 | 0.5000 |
9 | 1.0000 | 1.0000 | 1.0000 | 0.9995 | 0.9969 | 0.9873 | 0.9617 | 0.9081 | 0.8166 | 0.6855 |
10 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9994 | 0.9968 | 0.9880 | 0.9652 | 0.9174 | 0.8338 |
11 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9993 | 0.9970 | 0.9894 | 0.9699 | 0.9283 |
12 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9994 | 0.9975 | 0.9914 | 0.9755 |
13 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9995 | 0.9981 | 0.9936 |
14 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9997 | 0.9988 |
15 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 |
16 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
17 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
x | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.3972 | 0.1501 | 0.0536 | 0.0180 | 0.0056 | 0.0016 | 0.0004 | 0.0001 | 0.0000 | 0.0000 |
1 | 0.7735 | 0.4503 | 0.2241 | 0.0991 | 0.0395 | 0.0142 | 0.0046 | 0.0013 | 0.0003 | 0.0001 |
2 | 0.9419 | 0.7338 | 0.4797 | 0.2713 | 0.1353 | 0.0600 | 0.0236 | 0.0082 | 0.0025 | 0.0007 |
3 | 0.9891 | 0.9018 | 0.7202 | 0.5010 | 0.3057 | 0.1646 | 0.0783 | 0.0328 | 0.0120 | 0.0038 |
4 | 0.9985 | 0.9718 | 0.8794 | 0.7164 | 0.5187 | 0.3327 | 0.1886 | 0.0942 | 0.0411 | 0.0154 |
5 | 0.9998 | 0.9936 | 0.9581 | 0.8671 | 0.7175 | 0.5344 | 0.3550 | 0.2088 | 0.1077 | 0.0481 |
6 | 1.0000 | 0.9988 | 0.9882 | 0.9487 | 0.8610 | 0.7217 | 0.5491 | 0.3743 | 0.2258 | 0.1189 |
7 | 1.0000 | 0.9998 | 0.9973 | 0.9837 | 0.9431 | 0.8593 | 0.7283 | 0.5634 | 0.3915 | 0.2403 |
8 | 1.0000 | 1.0000 | 0.9995 | 0.9957 | 0.9807 | 0.9404 | 0.8609 | 0.7368 | 0.5778 | 0.4073 |
9 | 1.0000 | 1.0000 | 0.9999 | 0.9991 | 0.9946 | 0.9790 | 0.9403 | 0.8653 | 0.7473 | 0.5927 |
10 | 1.0000 | 1.0000 | 1.0000 | 0.9998 | 0.9988 | 0.9939 | 0.9788 | 0.9424 | 0.8720 | 0.7597 |
11 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9998 | 0.9986 | 0.9938 | 0.9797 | 0.9463 | 0.8811 |
12 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9997 | 0.9986 | 0.9942 | 0.9817 | 0.9519 |
13 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9997 | 0.9987 | 0.9951 | 0.9846 |
14 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9998 | 0.9990 | 0.9962 |
15 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9993 |
16 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 |
17 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
18 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
x | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.3774 | 0.1351 | 0.0456 | 0.0144 | 0.0042 | 0.0011 | 0.0003 | 0.0001 | 0.0000 | 0.0000 |
1 | 0.7547 | 0.4203 | 0.1985 | 0.0829 | 0.0310 | 0.0104 | 0.0031 | 0.0008 | 0.0002 | 0.0000 |
2 | 0.9335 | 0.7054 | 0.4413 | 0.2369 | 0.1113 | 0.0462 | 0.0170 | 0.0055 | 0.0015 | 0.0004 |
3 | 0.9868 | 0.8850 | 0.6841 | 0.4551 | 0.2631 | 0.1332 | 0.0591 | 0.0230 | 0.0077 | 0.0022 |
4 | 0.9980 | 0.9648 | 0.8556 | 0.6733 | 0.4654 | 0.2822 | 0.1500 | 0.0696 | 0.0280 | 0.0096 |
5 | 0.9998 | 0.9914 | 0.9463 | 0.8369 | 0.6678 | 0.4739 | 0.2968 | 0.1629 | 0.0777 | 0.0318 |
6 | 1.0000 | 0.9983 | 0.9837 | 0.9324 | 0.8251 | 0.6655 | 0.4812 | 0.3081 | 0.1727 | 0.0835 |
7 | 1.0000 | 0.9997 | 0.9959 | 0.9767 | 0.9225 | 0.8180 | 0.6656 | 0.4878 | 0.3169 | 0.1796 |
8 | 1.0000 | 1.0000 | 0.9992 | 0.9933 | 0.9713 | 0.9161 | 0.8145 | 0.6675 | 0.4940 | 0.3238 |
9 | 1.0000 | 1.0000 | 0.9999 | 0.9984 | 0.9911 | 0.9674 | 0.9125 | 0.8139 | 0.6710 | 0.5000 |
10 | 1.0000 | 1.0000 | 1.0000 | 0.9997 | 0.9977 | 0.9895 | 0.9653 | 0.9115 | 0.8159 | 0.6762 |
11 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9995 | 0.9972 | 0.9886 | 0.9648 | 0.9129 | 0.8204 |
12 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9994 | 0.9969 | 0.9884 | 0.9658 | 0.9165 |
13 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9993 | 0.9969 | 0.9891 | 0.9682 |
14 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9994 | 0.9972 | 0.9904 |
15 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9995 | 0.9978 |
16 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9996 |
17 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
18 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
19 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
x | 0.05 | 0.10 | 0.15 | 0.20 | 0.25 | 0.30 | 0.35 | 0.40 | 0.45 | 0.50 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.3585 | 0.1216 | 0.0388 | 0.0115 | 0.0032 | 0.0008 | 0.0002 | 0.0000 | 0.0000 | 0.0000 |
1 | 0.7358 | 0.3917 | 0.1756 | 0.0692 | 0.0243 | 0.0076 | 0.0021 | 0.0005 | 0.0001 | 0.0000 |
2 | 0.9245 | 0.6769 | 0.4049 | 0.2061 | 0.0913 | 0.0355 | 0.0121 | 0.0036 | 0.0009 | 0.0002 |
3 | 0.9841 | 0.8670 | 0.6477 | 0.4114 | 0.2252 | 0.1071 | 0.0444 | 0.0160 | 0.0049 | 0.0013 |
4 | 0.9974 | 0.9568 | 0.8298 | 0.6296 | 0.4148 | 0.2375 | 0.1182 | 0.0510 | 0.0189 | 0.0059 |
5 | 0.9997 | 0.9887 | 0.9327 | 0.8042 | 0.6172 | 0.4164 | 0.2454 | 0.1256 | 0.0553 | 0.0207 |
6 | 1.0000 | 0.9976 | 0.9781 | 0.9133 | 0.7858 | 0.6080 | 0.4166 | 0.2500 | 0.1299 | 0.0577 |
7 | 1.0000 | 0.9996 | 0.9941 | 0.9679 | 0.8982 | 0.7723 | 0.6010 | 0.4159 | 0.2520 | 0.1316 |
8 | 1.0000 | 0.9999 | 0.9987 | 0.9900 | 0.9591 | 0.8867 | 0.7624 | 0.5956 | 0.4143 | 0.2517 |
9 | 1.0000 | 1.0000 | 0.9998 | 0.9974 | 0.9861 | 0.9520 | 0.8782 | 0.7553 | 0.5914 | 0.4119 |
10 | 1.0000 | 1.0000 | 1.0000 | 0.9994 | 0.9961 | 0.9829 | 0.9468 | 0.8725 | 0.7507 | 0.5881 |
11 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9991 | 0.9949 | 0.9804 | 0.9435 | 0.8692 | 0.7483 |
12 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9998 | 0.9987 | 0.9940 | 0.9790 | 0.9420 | 0.8684 |
13 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9997 | 0.9985 | 0.9935 | 0.9786 | 0.9423 |
14 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9997 | 0.9984 | 0.9936 | 0.9793 |
15 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9997 | 0.9985 | 0.9941 |
16 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9997 | 0.9987 |
17 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9998 |
18 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
19 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
20 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
First, note that \(X\sim Hypergeometric(1000, 10, n)\)
\[ \begin{aligned} P(X\geq 1)&=1-P(X<1)=1-P(X\leq 0)\\ &=1-P(X=0) = 1-\frac{\binom{10}{0}\binom{990}{5}}{\binom{1000}{5}}\\ &=1-0.9509\approx 0.0491 \end{aligned} \]
With reposition we could approximate with the Binomial (note \(n/N=0.005<0.1\)), \(X\approx Bin(n=5,M/N=0.01)\)
\[P(X\geq 1)=1-P(X=0)\approx 1-0.95099\approx 0.04901\]
Both values are very close.
\(Y\sim Geo(p=0.01)\),
\[ \begin{aligned} P(Y=15)&=p(1-p)^{y-1}=0.01(1-0.01)^{14}\\ &=0.01(0.8687458)^14\approx 0.009 \end{aligned} \]
\(Y\sim Geo(p=0.01)\), then \[E[Y]=\frac{1}{p}=\frac{1}{0.01}=100\]
You need to inspect 100 units on average.
\(x\setminus\lambda\) | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.9048 | 0.8187 | 0.7408 | 0.6703 | 0.6065 | 0.5488 | 0.4966 | 0.4493 | 0.4066 | 0.3679 |
1 | 0.9953 | 0.9825 | 0.9631 | 0.9384 | 0.9098 | 0.8781 | 0.8442 | 0.8088 | 0.7725 | 0.7358 |
2 | 0.9998 | 0.9989 | 0.9964 | 0.9921 | 0.9856 | 0.9769 | 0.9659 | 0.9526 | 0.9371 | 0.9197 |
3 | 1.0000 | 0.9999 | 0.9997 | 0.9992 | 0.9982 | 0.9966 | 0.9942 | 0.9909 | 0.9865 | 0.9810 |
4 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9998 | 0.9996 | 0.9992 | 0.9986 | 0.9977 | 0.9963 |
5 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9998 | 0.9997 | 0.9994 |
6 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 |
7 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
\(x\setminus\lambda\) | 1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | 1.7 | 1.8 | 1.9 | 2.0 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.3329 | 0.3012 | 0.2725 | 0.2466 | 0.2231 | 0.2019 | 0.1827 | 0.1653 | 0.1496 | 0.1353 |
1 | 0.6990 | 0.6626 | 0.6268 | 0.5918 | 0.5578 | 0.5249 | 0.4932 | 0.4628 | 0.4337 | 0.4060 |
2 | 0.9004 | 0.8795 | 0.8571 | 0.8335 | 0.8088 | 0.7834 | 0.7572 | 0.7306 | 0.7037 | 0.6767 |
3 | 0.9743 | 0.9662 | 0.9569 | 0.9463 | 0.9344 | 0.9212 | 0.9068 | 0.8913 | 0.8747 | 0.8571 |
4 | 0.9946 | 0.9923 | 0.9893 | 0.9857 | 0.9814 | 0.9763 | 0.9704 | 0.9636 | 0.9559 | 0.9473 |
5 | 0.9990 | 0.9985 | 0.9978 | 0.9968 | 0.9955 | 0.9940 | 0.9920 | 0.9896 | 0.9868 | 0.9834 |
6 | 0.9999 | 0.9997 | 0.9996 | 0.9994 | 0.9991 | 0.9987 | 0.9981 | 0.9974 | 0.9966 | 0.9955 |
7 | 1.0000 | 1.0000 | 0.9999 | 0.9999 | 0.9998 | 0.9997 | 0.9996 | 0.9994 | 0.9992 | 0.9989 |
8 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9999 | 0.9998 | 0.9998 |
9 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
\(x\setminus\lambda\) | 2.1 | 2.2 | 2.3 | 2.4 | 2.5 | 2.6 | 2.7 | 2.8 | 2.9 | 3.0 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.1225 | 0.1108 | 0.1003 | 0.0907 | 0.0821 | 0.0743 | 0.0672 | 0.0608 | 0.0550 | 0.0498 |
1 | 0.3796 | 0.3546 | 0.3309 | 0.3084 | 0.2873 | 0.2674 | 0.2487 | 0.2311 | 0.2146 | 0.1991 |
2 | 0.6496 | 0.6227 | 0.5960 | 0.5697 | 0.5438 | 0.5184 | 0.4936 | 0.4695 | 0.4460 | 0.4232 |
3 | 0.8386 | 0.8194 | 0.7993 | 0.7787 | 0.7576 | 0.7360 | 0.7141 | 0.6919 | 0.6696 | 0.6472 |
4 | 0.9379 | 0.9275 | 0.9162 | 0.9041 | 0.8912 | 0.8774 | 0.8629 | 0.8477 | 0.8318 | 0.8153 |
5 | 0.9796 | 0.9751 | 0.9700 | 0.9643 | 0.9580 | 0.9510 | 0.9433 | 0.9349 | 0.9258 | 0.9161 |
6 | 0.9941 | 0.9925 | 0.9906 | 0.9884 | 0.9858 | 0.9828 | 0.9794 | 0.9756 | 0.9713 | 0.9665 |
7 | 0.9985 | 0.9980 | 0.9974 | 0.9967 | 0.9958 | 0.9947 | 0.9934 | 0.9919 | 0.9901 | 0.9881 |
8 | 0.9997 | 0.9995 | 0.9994 | 0.9991 | 0.9989 | 0.9985 | 0.9981 | 0.9976 | 0.9969 | 0.9962 |
9 | 0.9999 | 0.9999 | 0.9999 | 0.9998 | 0.9997 | 0.9996 | 0.9995 | 0.9993 | 0.9991 | 0.9989 |
10 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9999 | 0.9999 | 0.9998 | 0.9998 | 0.9997 |
\(x\setminus\lambda\) | 3.1 | 3.2 | 3.3 | 3.4 | 3.5 | 3.6 | 3.7 | 3.8 | 3.9 | 4.0 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.0450 | 0.0408 | 0.0369 | 0.0334 | 0.0302 | 0.0273 | 0.0247 | 0.0224 | 0.0202 | 0.0183 |
1 | 0.1847 | 0.1712 | 0.1586 | 0.1468 | 0.1359 | 0.1257 | 0.1162 | 0.1074 | 0.0992 | 0.0916 |
2 | 0.4012 | 0.3799 | 0.3594 | 0.3397 | 0.3208 | 0.3027 | 0.2854 | 0.2689 | 0.2531 | 0.2381 |
3 | 0.6248 | 0.6025 | 0.5803 | 0.5584 | 0.5366 | 0.5152 | 0.4942 | 0.4735 | 0.4532 | 0.4335 |
4 | 0.7982 | 0.7806 | 0.7626 | 0.7442 | 0.7254 | 0.7064 | 0.6872 | 0.6678 | 0.6484 | 0.6288 |
5 | 0.9057 | 0.8946 | 0.8829 | 0.8705 | 0.8576 | 0.8441 | 0.8301 | 0.8156 | 0.8006 | 0.7851 |
6 | 0.9612 | 0.9554 | 0.9490 | 0.9421 | 0.9347 | 0.9267 | 0.9182 | 0.9091 | 0.8995 | 0.8893 |
7 | 0.9858 | 0.9832 | 0.9802 | 0.9769 | 0.9733 | 0.9692 | 0.9648 | 0.9599 | 0.9546 | 0.9489 |
8 | 0.9953 | 0.9943 | 0.9931 | 0.9917 | 0.9901 | 0.9883 | 0.9863 | 0.9840 | 0.9815 | 0.9786 |
9 | 0.9986 | 0.9982 | 0.9978 | 0.9973 | 0.9967 | 0.9960 | 0.9952 | 0.9942 | 0.9931 | 0.9919 |
10 | 0.9996 | 0.9995 | 0.9994 | 0.9992 | 0.9990 | 0.9987 | 0.9984 | 0.9981 | 0.9977 | 0.9972 |
\(x\setminus\lambda\) | 4.1 | 4.2 | 4.3 | 4.4 | 4.5 | 4.6 | 4.7 | 4.8 | 4.9 | 5.0 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.0166 | 0.0150 | 0.0136 | 0.0123 | 0.0111 | 0.0101 | 0.0091 | 0.0082 | 0.0074 | 0.0067 |
1 | 0.0845 | 0.0780 | 0.0719 | 0.0663 | 0.0611 | 0.0563 | 0.0518 | 0.0477 | 0.0439 | 0.0404 |
2 | 0.2238 | 0.2102 | 0.1974 | 0.1851 | 0.1736 | 0.1626 | 0.1523 | 0.1425 | 0.1333 | 0.1247 |
3 | 0.4142 | 0.3954 | 0.3772 | 0.3594 | 0.3423 | 0.3257 | 0.3097 | 0.2942 | 0.2793 | 0.2650 |
4 | 0.6093 | 0.5898 | 0.5704 | 0.5512 | 0.5321 | 0.5132 | 0.4946 | 0.4763 | 0.4582 | 0.4405 |
5 | 0.7693 | 0.7531 | 0.7367 | 0.7199 | 0.7029 | 0.6858 | 0.6684 | 0.6510 | 0.6335 | 0.6160 |
6 | 0.8786 | 0.8675 | 0.8558 | 0.8436 | 0.8311 | 0.8180 | 0.8046 | 0.7908 | 0.7767 | 0.7622 |
7 | 0.9427 | 0.9361 | 0.9290 | 0.9214 | 0.9134 | 0.9049 | 0.8960 | 0.8867 | 0.8769 | 0.8666 |
8 | 0.9755 | 0.9721 | 0.9683 | 0.9642 | 0.9597 | 0.9549 | 0.9497 | 0.9442 | 0.9382 | 0.9319 |
9 | 0.9905 | 0.9889 | 0.9871 | 0.9851 | 0.9829 | 0.9805 | 0.9778 | 0.9749 | 0.9717 | 0.9682 |
10 | 0.9966 | 0.9959 | 0.9952 | 0.9943 | 0.9933 | 0.9922 | 0.9910 | 0.9896 | 0.9880 | 0.9863 |
\(x\setminus\lambda\) | 5.1 | 5.2 | 5.3 | 5.4 | 5.5 | 5.6 | 5.7 | 5.8 | 5.9 | 6.0 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.00610 | 0.00552 | 0.00499 | 0.00452 | 0.00409 | 0.00370 | 0.00335 | 0.00303 | 0.00274 | 0.00248 |
1 | 0.03719 | 0.03420 | 0.03145 | 0.02891 | 0.02656 | 0.02441 | 0.02242 | 0.02059 | 0.01890 | 0.01735 |
2 | 0.11648 | 0.10879 | 0.10155 | 0.09476 | 0.08838 | 0.08239 | 0.07677 | 0.07151 | 0.06658 | 0.06197 |
3 | 0.25127 | 0.23807 | 0.22541 | 0.21329 | 0.20170 | 0.19062 | 0.18005 | 0.16996 | 0.16035 | 0.15120 |
4 | 0.42313 | 0.40613 | 0.38952 | 0.37331 | 0.35752 | 0.34215 | 0.32721 | 0.31272 | 0.29866 | 0.28506 |
5 | 0.59842 | 0.58091 | 0.56347 | 0.54613 | 0.52892 | 0.51186 | 0.49498 | 0.47831 | 0.46187 | 0.44568 |
6 | 0.74742 | 0.73239 | 0.71713 | 0.70167 | 0.68604 | 0.67026 | 0.65437 | 0.63839 | 0.62236 | 0.60630 |
7 | 0.85598 | 0.84492 | 0.83348 | 0.82166 | 0.80949 | 0.79698 | 0.78415 | 0.77103 | 0.75763 | 0.74398 |
8 | 0.92518 | 0.91806 | 0.91055 | 0.90265 | 0.89436 | 0.88568 | 0.87662 | 0.86719 | 0.85739 | 0.84724 |
9 | 0.96440 | 0.96033 | 0.95594 | 0.95125 | 0.94622 | 0.94087 | 0.93518 | 0.92916 | 0.92279 | 0.91608 |
10 | 0.98440 | 0.98230 | 0.98000 | 0.97749 | 0.97475 | 0.97178 | 0.96856 | 0.96510 | 0.96137 | 0.95738 |
\(x\setminus\lambda\) | 6.1 | 6.2 | 6.3 | 6.4 | 6.5 | 6.6 | 6.7 | 6.8 | 6.9 | 7.0 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.00224 | 0.00203 | 0.00184 | 0.00166 | 0.00150 | 0.00136 | 0.00123 | 0.00111 | 0.00101 | 0.00091 |
1 | 0.01592 | 0.01461 | 0.01341 | 0.01230 | 0.01128 | 0.01034 | 0.00948 | 0.00869 | 0.00796 | 0.00730 |
2 | 0.05765 | 0.05362 | 0.04985 | 0.04632 | 0.04304 | 0.03997 | 0.03711 | 0.03444 | 0.03195 | 0.02964 |
3 | 0.14250 | 0.13423 | 0.12637 | 0.11892 | 0.11185 | 0.10515 | 0.09881 | 0.09281 | 0.08713 | 0.08177 |
4 | 0.27189 | 0.25918 | 0.24690 | 0.23507 | 0.22367 | 0.21270 | 0.20216 | 0.19203 | 0.18231 | 0.17299 |
5 | 0.42975 | 0.41411 | 0.39877 | 0.38374 | 0.36904 | 0.35467 | 0.34065 | 0.32698 | 0.31366 | 0.30071 |
6 | 0.59024 | 0.57421 | 0.55823 | 0.54233 | 0.52652 | 0.51084 | 0.49530 | 0.47992 | 0.46472 | 0.44971 |
7 | 0.73010 | 0.71602 | 0.70175 | 0.68732 | 0.67276 | 0.65808 | 0.64332 | 0.62849 | 0.61361 | 0.59871 |
8 | 0.83674 | 0.82591 | 0.81477 | 0.80331 | 0.79157 | 0.77956 | 0.76728 | 0.75477 | 0.74203 | 0.72909 |
9 | 0.90902 | 0.90162 | 0.89388 | 0.88580 | 0.87738 | 0.86864 | 0.85957 | 0.85018 | 0.84049 | 0.83050 |
10 | 0.95311 | 0.94856 | 0.94372 | 0.93859 | 0.93316 | 0.92743 | 0.92140 | 0.91507 | 0.90843 | 0.90148 |
\(x\setminus\lambda\) | 7.1 | 7.2 | 7.3 | 7.4 | 7.5 | 7.6 | 7.7 | 7.8 | 7.9 | 8.0 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.000825 | 0.000747 | 0.000676 | 0.000611 | 0.000553 | 0.000500 | 0.000453 | 0.000410 | 0.000371 | 0.000335 |
1 | 0.006683 | 0.006122 | 0.005607 | 0.005135 | 0.004701 | 0.004304 | 0.003940 | 0.003606 | 0.003300 | 0.003019 |
2 | 0.027480 | 0.025474 | 0.023607 | 0.021871 | 0.020257 | 0.018757 | 0.017364 | 0.016070 | 0.014869 | 0.013754 |
3 | 0.076699 | 0.071917 | 0.067406 | 0.063153 | 0.059145 | 0.055371 | 0.051819 | 0.048477 | 0.045334 | 0.042380 |
4 | 0.164063 | 0.155516 | 0.147340 | 0.139525 | 0.132062 | 0.124939 | 0.118145 | 0.111670 | 0.105503 | 0.099632 |
5 | 0.288119 | 0.275897 | 0.264043 | 0.252557 | 0.241436 | 0.230681 | 0.220287 | 0.210251 | 0.200569 | 0.191236 |
6 | 0.434920 | 0.420356 | 0.406032 | 0.391962 | 0.378155 | 0.364621 | 0.351369 | 0.338407 | 0.325740 | 0.313374 |
7 | 0.583817 | 0.568941 | 0.554107 | 0.539333 | 0.524639 | 0.510042 | 0.495560 | 0.481209 | 0.467004 | 0.452961 |
8 | 0.715964 | 0.702668 | 0.689224 | 0.675651 | 0.661967 | 0.648192 | 0.634343 | 0.620441 | 0.606503 | 0.592547 |
9 | 0.820212 | 0.809650 | 0.798820 | 0.787735 | 0.776408 | 0.764851 | 0.753080 | 0.741109 | 0.728952 | 0.716624 |
10 | 0.894229 | 0.886677 | 0.878825 | 0.870677 | 0.862238 | 0.853513 | 0.844508 | 0.835230 | 0.825686 | 0.815886 |
\(x\setminus\lambda\) | 9.1 | 9.2 | 9.3 | 9.4 | 9.5 | 9.6 | 9.7 | 9.8 | 9.9 | 10.0 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.000112 | 0.000101 | 0.000091 | 0.000083 | 0.000075 | 0.000068 | 0.000061 | 0.000055 | 0.000050 | 0.000045 |
1 | 0.001128 | 0.001031 | 0.000942 | 0.000860 | 0.000786 | 0.000718 | 0.000656 | 0.000599 | 0.000547 | 0.000499 |
2 | 0.005751 | 0.005307 | 0.004895 | 0.004515 | 0.004164 | 0.003839 | 0.003539 | 0.003262 | 0.003006 | 0.002769 |
3 | 0.019776 | 0.018420 | 0.017152 | 0.015967 | 0.014860 | 0.013826 | 0.012861 | 0.011960 | 0.011120 | 0.010336 |
4 | 0.051682 | 0.048580 | 0.045647 | 0.042878 | 0.040263 | 0.037795 | 0.035467 | 0.033271 | 0.031202 | 0.029253 |
5 | 0.109751 | 0.104074 | 0.098650 | 0.093471 | 0.088528 | 0.083815 | 0.079322 | 0.075041 | 0.070965 | 0.067086 |
6 | 0.197823 | 0.189165 | 0.180803 | 0.172733 | 0.164949 | 0.157447 | 0.150221 | 0.143265 | 0.136574 | 0.130141 |
7 | 0.312316 | 0.301000 | 0.289950 | 0.279171 | 0.268663 | 0.258428 | 0.248467 | 0.238779 | 0.229364 | 0.220221 |
8 | 0.442552 | 0.429609 | 0.416834 | 0.404235 | 0.391823 | 0.379606 | 0.367590 | 0.355783 | 0.344191 | 0.332820 |
9 | 0.574235 | 0.561076 | 0.547946 | 0.534858 | 0.521826 | 0.508862 | 0.495979 | 0.483188 | 0.470502 | 0.457930 |
10 | 0.694067 | 0.682026 | 0.669881 | 0.657646 | 0.645331 | 0.632949 | 0.620510 | 0.608024 | 0.595501 | 0.582950 |
If \(X\) if the r.v. of the number of patients arriving every day at the ICU, \(X\sim Poi(4)\). We are interested in \(P(X\leq 6)\), looking at the table we get \(F(6)=0.8893\). ✅ True.
Note that from the table we can see that \(P(X=3)=P(X=4)=0.1954\), and also \(\lambda=4\). Given that \(\lambda=E[X]\), the most likely value must be \(\lambda\) or very close. In sum, the sentence is ❌ false.
We need to remember two important facts about the Poisson distribution. In two disjoint periods, the random variables are independent. So the number of patients one day, and the number of patients in the next days are independent. On the other hand, remember that the distribution must be the same for the same time-window (they are independently but identically distributed):
\[P(X_{day2}=5|X_{day1}=2)=P(X_{day2}=5)=0.1563\]
The sentence is ✅ true.
Let \(Y\sim Poi(20)\) (because of the additivity theorem).
\[ \begin{aligned} P(Y\geq 15)&=1-P(Y<15)\\ &=1-P(Y\leq 14)=1-F(14)\\& =1-0.1049=0.8951 \end{aligned} \]
The sentence is ❌ false.
In this exercise, we need to find, given that \(\lambda=4\), the \(x\) that makes \(F(x)\) greater or equal than 0.97. By inspection in the table, we see that it is \(x=8\), but we have know 6 beds, and therefore we would need 2 more beds to satisfy our requirement.
The sentence is ❌ false.
Statistics I