Nova SBE
https://moodle.novasbe.pt/mod/folder/view.php?id=4021
One of the most important decisions business leaders face concerns the allocation of the firm’s budget to the different departments. To help in the decision of finding out how much money to allocate to the R&D department you decide to collect data for 32 firms in the chemical industry on the following variables: rdintensity (expenditures on r&d as % of sales), profmarg (profits as % of sales), and sales (in millions of USD). You then estimate the following equation (se in parenthesis):
\[ \widehat{profmarg}=\underset{(6.3043)}{11.76}+\underset{(0.7233)}{0.79}rdintensity-\underset{(0.8814)}{0.63}\log(sales) \]
With \(R^2=0.0464\)
\[ \widehat{colGPA}=\underset{(0.33)}{1.39}+\underset{(0.094)}{0.412}hsGPA + \underset{(0.011)}{0.015}ACT-\underset{(0.026)}{0.083}skipped \]
Consider the following model:
\[ \log(scrap)=\beta_0+\beta_1 hrsemp + \beta_2 \log(sales)+\beta_3 \log(employ)+u \]
where hrsemp is annual hours of training per employee, sales is annual firm sales (in dollars), and employ is the number of firm employees.
Show that the population model can also be written as
\[ \log(scrap)=\beta_0+\beta_1 hrsemp + \beta_2 \log(sales/employ)+\theta_3 \log(employ)+u \]
where \(\theta_3=\beta_2+\beta_3\)
Interpret the null hypothesis \(H_0: \theta_3=0\).
\[ \widehat{\log(scrap)}=\underset{(4.57)}{11.74}+\underset{(0.019)}{0.043} hrsemp - \underset{(0.370)}{0.951}\log(sales) + \underset{(0.360)}{0.992}\log(employ) \]
\[ \widehat{\log(scrap)}=\underset{(4.57)}{11.74}+\underset{(0.019)}{0.043} hrsemp - \underset{(0.370)}{0.951}\log(sales/employ) + \underset{(0.205)}{0041}\log(employ) \]
With the goal of evaluating the environmental impact of different management policies of Natural Parks, a study has analyzed data for 28 Natural Parks in country X. The following regression was estimated: \[ \hat{y} = \underset{(-1.085)}{-12.666}+\underset{(17.299)}{3.743}x_{1}-\underset{(-2.164)}{9.614}x_{2} \]
where \(y\) is the number of animals and plants in extintion danger in each park, \(x_1\) is the number of visits to the park (in thousands), and \(x_2\) is the expenditures on nature conservation (in million euro). Consider also that \(Cov\left(\hat{\beta}_1,\hat{\beta}_2\right)=-0.8835\). The numbers in parenthesis are t-statistics.
| df-\(\alpha/2\) | 0.50 | 0.25 | 0.20 | 0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 | 0.0005 | 
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0.000 | 1.000 | 1.376 | 1.963 | 3.078 | 6.314 | 12.71 | 31.82 | 63.66 | 318.31 | 636.62 | 
| 2 | 0.000 | 0.816 | 1.061 | 1.386 | 1.886 | 2.920 | 4.303 | 6.965 | 9.925 | 22.327 | 31.599 | 
| 3 | 0.000 | 0.765 | 0.978 | 1.250 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 | 10.215 | 12.924 | 
| 4 | 0.000 | 0.741 | 0.941 | 1.190 | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 | 7.173 | 8.610 | 
| 5 | 0.000 | 0.727 | 0.920 | 1.156 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 | 5.893 | 6.869 | 
| 6 | 0.000 | 0.718 | 0.906 | 1.134 | 1.440 | 1.943 | 2.447 | 3.143 | 3.707 | 5.208 | 5.959 | 
| 7 | 0.000 | 0.711 | 0.896 | 1.119 | 1.415 | 1.895 | 2.365 | 2.998 | 3.499 | 4.785 | 5.408 | 
| 8 | 0.000 | 0.706 | 0.889 | 1.108 | 1.397 | 1.860 | 2.306 | 2.896 | 3.355 | 4.501 | 5.041 | 
| 9 | 0.000 | 0.703 | 0.883 | 1.100 | 1.383 | 1.833 | 2.262 | 2.821 | 3.250 | 4.297 | 4.781 | 
| 10 | 0.000 | 0.700 | 0.879 | 1.093 | 1.372 | 1.812 | 2.228 | 2.764 | 3.169 | 4.144 | 4.587 | 
| 11 | 0.000 | 0.697 | 0.876 | 1.088 | 1.363 | 1.796 | 2.201 | 2.718 | 3.106 | 4.025 | 4.437 | 
| 12 | 0.000 | 0.695 | 0.873 | 1.083 | 1.356 | 1.782 | 2.179 | 2.681 | 3.055 | 3.930 | 4.318 | 
| 13 | 0.000 | 0.694 | 0.870 | 1.079 | 1.350 | 1.771 | 2.160 | 2.650 | 3.012 | 3.852 | 4.221 | 
| 14 | 0.000 | 0.692 | 0.868 | 1.076 | 1.345 | 1.761 | 2.145 | 2.624 | 2.977 | 3.787 | 4.140 | 
| 15 | 0.000 | 0.691 | 0.866 | 1.074 | 1.341 | 1.753 | 2.131 | 2.602 | 2.947 | 3.733 | 4.073 | 
| 16 | 0.000 | 0.690 | 0.865 | 1.071 | 1.337 | 1.746 | 2.120 | 2.583 | 2.921 | 3.686 | 4.015 | 
| 17 | 0.000 | 0.689 | 0.863 | 1.069 | 1.333 | 1.740 | 2.110 | 2.567 | 2.898 | 3.646 | 3.965 | 
| 18 | 0.000 | 0.688 | 0.862 | 1.067 | 1.330 | 1.734 | 2.101 | 2.552 | 2.878 | 3.610 | 3.922 | 
| 19 | 0.000 | 0.688 | 0.861 | 1.066 | 1.328 | 1.729 | 2.093 | 2.539 | 2.861 | 3.579 | 3.883 | 
| 20 | 0.000 | 0.687 | 0.860 | 1.064 | 1.325 | 1.725 | 2.086 | 2.528 | 2.845 | 3.552 | 3.850 | 
| 21 | 0.000 | 0.686 | 0.859 | 1.063 | 1.323 | 1.721 | 2.080 | 2.518 | 2.831 | 3.527 | 3.819 | 
| 22 | 0.000 | 0.686 | 0.858 | 1.061 | 1.321 | 1.717 | 2.074 | 2.508 | 2.819 | 3.505 | 3.792 | 
| 23 | 0.000 | 0.685 | 0.858 | 1.060 | 1.319 | 1.714 | 2.069 | 2.500 | 2.807 | 3.485 | 3.768 | 
| 24 | 0.000 | 0.685 | 0.857 | 1.059 | 1.318 | 1.711 | 2.064 | 2.492 | 2.797 | 3.467 | 3.745 | 
| 25 | 0.000 | 0.684 | 0.856 | 1.058 | 1.316 | 1.708 | 2.060 | 2.485 | 2.787 | 3.450 | 3.725 | 
| 26 | 0.000 | 0.684 | 0.856 | 1.058 | 1.315 | 1.706 | 2.056 | 2.479 | 2.779 | 3.435 | 3.707 | 
| 27 | 0.000 | 0.684 | 0.855 | 1.057 | 1.314 | 1.703 | 2.052 | 2.473 | 2.771 | 3.421 | 3.690 | 
| 28 | 0.000 | 0.683 | 0.855 | 1.056 | 1.313 | 1.701 | 2.048 | 2.467 | 2.763 | 3.408 | 3.674 | 
| 29 | 0.000 | 0.683 | 0.854 | 1.055 | 1.311 | 1.699 | 2.045 | 2.462 | 2.756 | 3.396 | 3.659 | 
| 30 | 0.000 | 0.683 | 0.854 | 1.055 | 1.310 | 1.697 | 2.042 | 2.457 | 2.750 | 3.385 | 3.646 | 
| 40 | 0.000 | 0.681 | 0.851 | 1.050 | 1.303 | 1.684 | 2.021 | 2.423 | 2.704 | 3.307 | 3.551 | 
| 60 | 0.000 | 0.679 | 0.848 | 1.045 | 1.296 | 1.671 | 2.000 | 2.390 | 2.660 | 3.232 | 3.460 | 
| 80 | 0.000 | 0.678 | 0.846 | 1.043 | 1.292 | 1.664 | 1.990 | 2.374 | 2.639 | 3.195 | 3.416 | 
| 100 | 0.000 | 0.677 | 0.845 | 1.042 | 1.290 | 1.660 | 1.984 | 2.364 | 2.626 | 3.174 | 3.390 | 
| 1000 | 0.000 | 0.675 | 0.842 | 1.037 | 1.282 | 1.646 | 1.962 | 2.330 | 2.581 | 3.098 | 3.300 | 
| Z | 0.000 | 0.674 | 0.842 | 1.036 | 1.282 | 1.645 | 1.960 | 2.326 | 2.576 | 3.090 | 3.291 | 
Back to Exercise 3.1 Exercise 3.3 Exercise 3.4
Econometrics