Nova SBE
We will need this:
\[ F = \frac{(R^2_{ur} - R^2_{r})/q}{(1 - R^2_{ur})/(n-k-1)} \]
https://moodle.novasbe.pt/mod/folder/view.php?id=4021
The players of a basketball team can play in three positions: guard, forward or center. The variable exper is the number of years as a professional player, points is the number of points scored per game, guard is a binary variable equal to one if the player is a guard and 0 otherwise, and forward is a binary variable equal to one if the player is a forward and 0 otherwise. Standard errors are reported in parentheses. Consider the following estimated equation:
\[ \widehat{points}= \underset{(1.18)}{4.76} + \underset{(0.33)}{1.28} exper - \underset{(0.024)}{0.072} exper^2 + \underset{(1.00)}{2.31}guard + \underset{(1.00)}{1.54}forward \] With \(n=269\), \(R^2=0.091\), \(\bar{R}^2=0.077\)
Interpret the regression coefficients:
\[ \widehat{points}= \underset{(1.18)}{4.76} + \underset{(0.33)}{1.28} exper - \underset{(0.024)}{0.072} exper^2 + \underset{(1.00)}{2.31}guard + \underset{(1.00)}{1.54}forward \]
Why can’t we include in the model a binary variable center equal to one if the player is a center and zero otherwise?
\[ \widehat{points}= \underset{(1.18)}{4.76} + \underset{(0.33)}{1.28} exper - \underset{(0.024)}{0.072} exper^2 + \underset{(1.00)}{2.31}guard + \underset{(1.00)}{1.54}forward \]
Holding experience fixed, does a guard score more than a center? How much more? Is the difference statistically significant?
\[ \widehat{points}= \underset{(1.18)}{4.76} + \underset{(0.33)}{1.28} exper - \underset{(0.024)}{0.072} exper^2 + \underset{(1.00)}{2.31}guard + \underset{(1.00)}{1.54}forward \] With \(n=269\), \(R^2=0.091\), \(\bar{R}^2=0.077\)
Considering also the following estimated equation, test if experience influences points.
\[ \widehat{points}= \underset{(1.18)}{4.76} + \underset{(0.33)}{1.28} exper - \underset{(0.024)}{0.072} exper^2 + \underset{(1.00)}{2.31}guard + \underset{(1.00)}{1.54}forward \]
With \(n=269\), \(R^2=0.091\), \(\bar{R}^2=0.077\)
\[ \widehat{points}= \underset{(0.86)}{8.52} + \underset{(1.03)}{2.40}guard + \underset{(1.03)}{1.68}forward \]
with \(n=269\) and \(R^2=0.020\), \(\bar{R}^2=0.012\)
\[ \widehat{points} = \underset{(1.18)}{4.70} + \underset{(0.33)}{1.23} exper - \underset{(0.02)}{0.07} exper^2 + \underset{(1.00)}{2.29} guard + \underset{(1.00)}{1.54} forward + \underset{(0.74)}{0.58} marr \]
Holding position and experience fixed, do married plyaers score more points?
Consider the estimation output given in the table below for a new model that includes interactions of marital status with both experience variables. Is there strong evidence that marital status affects points per game?

Given this last estimated equation, what is the optimal number of years as a professional player if that player (for both married and not married players)?
\[ \widehat{sat}= \underset{(6.29)}{1029.10} + \underset{(3.83)}{19.30} hsize - \underset{(0.53)}{2.19} hsize^2 - \underset{(4.29)}{45.09} female - \underset{(12.71)}{169.81} black + \underset{(18.15)}{62.31} female\times black \] With \(n=4137\) and \(R^2=0.0858\).
The variable sat is the combined school average test (SAT) score, hsize is size of the student’s high school graduating class, in hundreds, female is a gender dummy variable, and black is a race dummy variable equal to one for black students and zero otherwise.
Is there strong evidence that \(hsize^2\) should be included in the model? From this equation, what is the optimal high school size?
\[ \widehat{sat}= \underset{(6.29)}{1029.10} + \underset{(3.83)}{19.30} hsize - \underset{(0.53)}{2.19} hsize^2 - \underset{(4.29)}{45.09} female - \underset{(12.71)}{169.81} black + \underset{(18.15)}{62.31} female\times black \] With \(n=4137\) and \(R^2=0.0858\).
Holding hsize fixed what is the estimated difference in SAT score between nonblack females and nonblack males? How statistically significant is this estimated difference?
\[ \widehat{sat}= \underset{(6.29)}{1029.10} + \underset{(3.83)}{19.30} hsize - \underset{(0.53)}{2.19} hsize^2 - \underset{(4.29)}{45.09} female - \underset{(12.71)}{169.81} black + \underset{(18.15)}{62.31} female\times black \] With \(n=4137\) and \(R^2=0.0858\).
What is the estimated difference in SAT score between nonblack males and black males? Test the null hypothesis that there is no difference between their scores, against the alternative that there is a difference.
\[ \widehat{sat}= \underset{(6.29)}{1029.10} + \underset{(3.83)}{19.30} hsize - \underset{(0.53)}{2.19} hsize^2 - \underset{(4.29)}{45.09} female - \underset{(12.71)}{169.81} black + \underset{(18.15)}{62.31} female\times black \] With \(n=4137\) and \(R^2=0.0858\).
What is the estimated difference in SAT score between black females and nonblack females? What would you need to do to test whether the difference is statistically significant?
\[ \widehat{sat}= \underset{(6.29)}{1029.10} + \underset{(3.83)}{19.30} hsize - \underset{(0.53)}{2.19} hsize^2 - \underset{(4.29)}{45.09} female - \underset{(12.71)}{169.81} black + \underset{(18.15)}{62.31} female\times black \] With \(n=4137\) and \(R^2=0.0858\).
| df-\(\alpha/2\) | 0.50 | 0.25 | 0.20 | 0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 | 0.0005 | 
|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0.000 | 1.000 | 1.376 | 1.963 | 3.078 | 6.314 | 12.71 | 31.82 | 63.66 | 318.31 | 636.62 | 
| 2 | 0.000 | 0.816 | 1.061 | 1.386 | 1.886 | 2.920 | 4.303 | 6.965 | 9.925 | 22.327 | 31.599 | 
| 3 | 0.000 | 0.765 | 0.978 | 1.250 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 | 10.215 | 12.924 | 
| 4 | 0.000 | 0.741 | 0.941 | 1.190 | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 | 7.173 | 8.610 | 
| 5 | 0.000 | 0.727 | 0.920 | 1.156 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 | 5.893 | 6.869 | 
| 6 | 0.000 | 0.718 | 0.906 | 1.134 | 1.440 | 1.943 | 2.447 | 3.143 | 3.707 | 5.208 | 5.959 | 
| 7 | 0.000 | 0.711 | 0.896 | 1.119 | 1.415 | 1.895 | 2.365 | 2.998 | 3.499 | 4.785 | 5.408 | 
| 8 | 0.000 | 0.706 | 0.889 | 1.108 | 1.397 | 1.860 | 2.306 | 2.896 | 3.355 | 4.501 | 5.041 | 
| 9 | 0.000 | 0.703 | 0.883 | 1.100 | 1.383 | 1.833 | 2.262 | 2.821 | 3.250 | 4.297 | 4.781 | 
| 10 | 0.000 | 0.700 | 0.879 | 1.093 | 1.372 | 1.812 | 2.228 | 2.764 | 3.169 | 4.144 | 4.587 | 
| 11 | 0.000 | 0.697 | 0.876 | 1.088 | 1.363 | 1.796 | 2.201 | 2.718 | 3.106 | 4.025 | 4.437 | 
| 12 | 0.000 | 0.695 | 0.873 | 1.083 | 1.356 | 1.782 | 2.179 | 2.681 | 3.055 | 3.930 | 4.318 | 
| 13 | 0.000 | 0.694 | 0.870 | 1.079 | 1.350 | 1.771 | 2.160 | 2.650 | 3.012 | 3.852 | 4.221 | 
| 14 | 0.000 | 0.692 | 0.868 | 1.076 | 1.345 | 1.761 | 2.145 | 2.624 | 2.977 | 3.787 | 4.140 | 
| 15 | 0.000 | 0.691 | 0.866 | 1.074 | 1.341 | 1.753 | 2.131 | 2.602 | 2.947 | 3.733 | 4.073 | 
| 16 | 0.000 | 0.690 | 0.865 | 1.071 | 1.337 | 1.746 | 2.120 | 2.583 | 2.921 | 3.686 | 4.015 | 
| 17 | 0.000 | 0.689 | 0.863 | 1.069 | 1.333 | 1.740 | 2.110 | 2.567 | 2.898 | 3.646 | 3.965 | 
| 18 | 0.000 | 0.688 | 0.862 | 1.067 | 1.330 | 1.734 | 2.101 | 2.552 | 2.878 | 3.610 | 3.922 | 
| 19 | 0.000 | 0.688 | 0.861 | 1.066 | 1.328 | 1.729 | 2.093 | 2.539 | 2.861 | 3.579 | 3.883 | 
| 20 | 0.000 | 0.687 | 0.860 | 1.064 | 1.325 | 1.725 | 2.086 | 2.528 | 2.845 | 3.552 | 3.850 | 
| 21 | 0.000 | 0.686 | 0.859 | 1.063 | 1.323 | 1.721 | 2.080 | 2.518 | 2.831 | 3.527 | 3.819 | 
| 22 | 0.000 | 0.686 | 0.858 | 1.061 | 1.321 | 1.717 | 2.074 | 2.508 | 2.819 | 3.505 | 3.792 | 
| 23 | 0.000 | 0.685 | 0.858 | 1.060 | 1.319 | 1.714 | 2.069 | 2.500 | 2.807 | 3.485 | 3.768 | 
| 24 | 0.000 | 0.685 | 0.857 | 1.059 | 1.318 | 1.711 | 2.064 | 2.492 | 2.797 | 3.467 | 3.745 | 
| 25 | 0.000 | 0.684 | 0.856 | 1.058 | 1.316 | 1.708 | 2.060 | 2.485 | 2.787 | 3.450 | 3.725 | 
| 26 | 0.000 | 0.684 | 0.856 | 1.058 | 1.315 | 1.706 | 2.056 | 2.479 | 2.779 | 3.435 | 3.707 | 
| 27 | 0.000 | 0.684 | 0.855 | 1.057 | 1.314 | 1.703 | 2.052 | 2.473 | 2.771 | 3.421 | 3.690 | 
| 28 | 0.000 | 0.683 | 0.855 | 1.056 | 1.313 | 1.701 | 2.048 | 2.467 | 2.763 | 3.408 | 3.674 | 
| 29 | 0.000 | 0.683 | 0.854 | 1.055 | 1.311 | 1.699 | 2.045 | 2.462 | 2.756 | 3.396 | 3.659 | 
| 30 | 0.000 | 0.683 | 0.854 | 1.055 | 1.310 | 1.697 | 2.042 | 2.457 | 2.750 | 3.385 | 3.646 | 
| 40 | 0.000 | 0.681 | 0.851 | 1.050 | 1.303 | 1.684 | 2.021 | 2.423 | 2.704 | 3.307 | 3.551 | 
| 60 | 0.000 | 0.679 | 0.848 | 1.045 | 1.296 | 1.671 | 2.000 | 2.390 | 2.660 | 3.232 | 3.460 | 
| 80 | 0.000 | 0.678 | 0.846 | 1.043 | 1.292 | 1.664 | 1.990 | 2.374 | 2.639 | 3.195 | 3.416 | 
| 100 | 0.000 | 0.677 | 0.845 | 1.042 | 1.290 | 1.660 | 1.984 | 2.364 | 2.626 | 3.174 | 3.390 | 
| 1000 | 0.000 | 0.675 | 0.842 | 1.037 | 1.282 | 1.646 | 1.962 | 2.330 | 2.581 | 3.098 | 3.300 | 
| Z | 0.000 | 0.674 | 0.842 | 1.036 | 1.282 | 1.645 | 1.960 | 2.326 | 2.576 | 3.090 | 3.291 | 
| df2-α=0.05 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 
|---|---|---|---|---|---|---|---|---|---|---|
| 1.000 | 161.448 | 199.500 | 215.707 | 224.583 | 230.162 | 233.986 | 236.768 | 238.883 | 240.543 | 241.882 | 
| 2.000 | 18.513 | 19.000 | 19.164 | 19.247 | 19.296 | 19.330 | 19.353 | 19.371 | 19.385 | 19.396 | 
| 3.000 | 10.128 | 9.552 | 9.277 | 9.117 | 9.013 | 8.941 | 8.887 | 8.845 | 8.812 | 8.786 | 
| 4.000 | 7.709 | 6.944 | 6.591 | 6.388 | 6.256 | 6.163 | 6.094 | 6.041 | 5.999 | 5.964 | 
| 5.000 | 6.608 | 5.786 | 5.409 | 5.192 | 5.050 | 4.950 | 4.876 | 4.818 | 4.772 | 4.735 | 
| 6.000 | 5.987 | 5.143 | 4.757 | 4.534 | 4.387 | 4.284 | 4.207 | 4.147 | 4.099 | 4.060 | 
| 7.000 | 5.591 | 4.737 | 4.347 | 4.120 | 3.972 | 3.866 | 3.787 | 3.726 | 3.677 | 3.637 | 
| 8.000 | 5.318 | 4.459 | 4.066 | 3.838 | 3.687 | 3.581 | 3.500 | 3.438 | 3.388 | 3.347 | 
| 9.000 | 5.117 | 4.256 | 3.863 | 3.633 | 3.482 | 3.374 | 3.293 | 3.230 | 3.179 | 3.137 | 
| 10.000 | 4.965 | 4.103 | 3.708 | 3.478 | 3.326 | 3.217 | 3.135 | 3.072 | 3.020 | 2.978 | 
| 11.000 | 4.844 | 3.982 | 3.587 | 3.357 | 3.204 | 3.095 | 3.012 | 2.948 | 2.896 | 2.854 | 
| 12.000 | 4.747 | 3.885 | 3.490 | 3.259 | 3.106 | 2.996 | 2.913 | 2.849 | 2.796 | 2.753 | 
| 13.000 | 4.667 | 3.806 | 3.411 | 3.179 | 3.025 | 2.915 | 2.832 | 2.767 | 2.714 | 2.671 | 
| 14.000 | 4.600 | 3.739 | 3.344 | 3.112 | 2.958 | 2.848 | 2.764 | 2.699 | 2.646 | 2.602 | 
| 15.000 | 4.543 | 3.682 | 3.287 | 3.056 | 2.901 | 2.790 | 2.707 | 2.641 | 2.588 | 2.544 | 
| 16.000 | 4.494 | 3.634 | 3.239 | 3.007 | 2.852 | 2.741 | 2.657 | 2.591 | 2.538 | 2.494 | 
| 17.000 | 4.451 | 3.592 | 3.197 | 2.965 | 2.810 | 2.699 | 2.614 | 2.548 | 2.494 | 2.450 | 
| 18.000 | 4.414 | 3.555 | 3.160 | 2.928 | 2.773 | 2.661 | 2.577 | 2.510 | 2.456 | 2.412 | 
| 19.000 | 4.381 | 3.522 | 3.127 | 2.895 | 2.740 | 2.628 | 2.544 | 2.477 | 2.423 | 2.378 | 
| 20.000 | 4.351 | 3.493 | 3.098 | 2.866 | 2.711 | 2.599 | 2.514 | 2.447 | 2.393 | 2.348 | 
| 21.000 | 4.325 | 3.467 | 3.072 | 2.840 | 2.685 | 2.573 | 2.488 | 2.420 | 2.366 | 2.321 | 
| 22.000 | 4.301 | 3.443 | 3.049 | 2.817 | 2.661 | 2.549 | 2.464 | 2.397 | 2.342 | 2.297 | 
| 23.000 | 4.279 | 3.422 | 3.028 | 2.796 | 2.640 | 2.528 | 2.442 | 2.375 | 2.320 | 2.275 | 
| 24.000 | 4.260 | 3.403 | 3.009 | 2.776 | 2.621 | 2.508 | 2.423 | 2.355 | 2.300 | 2.255 | 
| 25.000 | 4.242 | 3.385 | 2.991 | 2.759 | 2.603 | 2.490 | 2.405 | 2.337 | 2.282 | 2.236 | 
| 26.000 | 4.225 | 3.369 | 2.975 | 2.743 | 2.587 | 2.474 | 2.388 | 2.321 | 2.265 | 2.220 | 
| 27.000 | 4.210 | 3.354 | 2.960 | 2.728 | 2.572 | 2.459 | 2.373 | 2.305 | 2.250 | 2.204 | 
| 28.000 | 4.196 | 3.340 | 2.947 | 2.714 | 2.558 | 2.445 | 2.359 | 2.291 | 2.236 | 2.190 | 
| 29.000 | 4.183 | 3.328 | 2.934 | 2.701 | 2.545 | 2.432 | 2.346 | 2.278 | 2.223 | 2.177 | 
| 30.000 | 4.171 | 3.316 | 2.922 | 2.690 | 2.534 | 2.421 | 2.334 | 2.266 | 2.211 | 2.165 | 
| 40.000 | 4.085 | 3.232 | 2.839 | 2.606 | 2.449 | 2.336 | 2.249 | 2.180 | 2.124 | 2.077 | 
| 60.000 | 4.001 | 3.150 | 2.758 | 2.525 | 2.368 | 2.254 | 2.167 | 2.097 | 2.040 | 1.993 | 
| 120.000 | 3.920 | 3.072 | 2.680 | 2.447 | 2.290 | 2.175 | 2.087 | 2.016 | 1.959 | 1.910 | 
| 1000000000.000 | 3.841 | 2.996 | 2.605 | 2.372 | 2.214 | 2.099 | 2.010 | 1.938 | 1.880 | 1.831 | 
Econometrics