Binary Data

Paulo Fagandini

Nova SBE

Review

Review

We will need this:

\[ F = \frac{(R^2_{ur} - R^2_{r})/q}{(1 - R^2_{ur})/(n-k-1)} \]

Exercises

https://moodle.novasbe.pt/mod/folder/view.php?id=4021

Exercise 5.5

The players of a basketball team can play in three positions: guard, forward or center. The variable exper is the number of years as a professional player, points is the number of points scored per game, guard is a binary variable equal to one if the player is a guard and 0 otherwise, and forward is a binary variable equal to one if the player is a forward and 0 otherwise. Standard errors are reported in parentheses. Consider the following estimated equation:

\[ \widehat{points}= \underset{(1.18)}{4.76} + \underset{(0.33)}{1.28} exper - \underset{(0.024)}{0.072} exper^2 + \underset{(1.00)}{2.31}guard + \underset{(1.00)}{1.54}forward \] With \(n=269\), \(R^2=0.091\), \(\bar{R}^2=0.077\)

Question 5.5 a

Interpret the regression coefficients:

\[ \widehat{points}= \underset{(1.18)}{4.76} + \underset{(0.33)}{1.28} exper - \underset{(0.024)}{0.072} exper^2 + \underset{(1.00)}{2.31}guard + \underset{(1.00)}{1.54}forward \]

  1. \(exper\)
  2. \(guard\), \(forward\)

Question 5.5 b

Why can’t we include in the model a binary variable center equal to one if the player is a center and zero otherwise?

\[ \widehat{points}= \underset{(1.18)}{4.76} + \underset{(0.33)}{1.28} exper - \underset{(0.024)}{0.072} exper^2 + \underset{(1.00)}{2.31}guard + \underset{(1.00)}{1.54}forward \]

  1. \(exper\)
  2. \(guard\), \(forward\)

Question 5.5 c

Holding experience fixed, does a guard score more than a center? How much more? Is the difference statistically significant?

\[ \widehat{points}= \underset{(1.18)}{4.76} + \underset{(0.33)}{1.28} exper - \underset{(0.024)}{0.072} exper^2 + \underset{(1.00)}{2.31}guard + \underset{(1.00)}{1.54}forward \] With \(n=269\), \(R^2=0.091\), \(\bar{R}^2=0.077\)

Question 5.5 d

Considering also the following estimated equation, test if experience influences points.

\[ \widehat{points}= \underset{(1.18)}{4.76} + \underset{(0.33)}{1.28} exper - \underset{(0.024)}{0.072} exper^2 + \underset{(1.00)}{2.31}guard + \underset{(1.00)}{1.54}forward \]

With \(n=269\), \(R^2=0.091\), \(\bar{R}^2=0.077\)

\[ \widehat{points}= \underset{(0.86)}{8.52} + \underset{(1.03)}{2.40}guard + \underset{(1.03)}{1.68}forward \]

with \(n=269\) and \(R^2=0.020\), \(\bar{R}^2=0.012\)

Question 5.5 e

Consider a new equation with marital status (marr) as an additional explanatory variable:

\[ \widehat{points} = \underset{(1.18)}{4.70} + \underset{(0.33)}{1.23} exper - \underset{(0.02)}{0.07} exper^2 + \underset{(1.00)}{2.29} guard + \underset{(1.00)}{1.54} forward + \underset{(0.74)}{0.58} marr \]

Holding position and experience fixed, do married plyaers score more points?

Question 5.5 f

Consider the estimation output given in the table below for a new model that includes interactions of marital status with both experience variables. Is there strong evidence that marital status affects points per game?

Alt text

Question 5.5 g

Given this last estimated equation, what is the optimal number of years as a professional player if that player (for both married and not married players)?

Question 5.9

Consider the following estimated equation:

\[ \widehat{sat}= \underset{(6.29)}{1029.10} + \underset{(3.83)}{19.30} hsize - \underset{(0.53)}{2.19} hsize^2 - \underset{(4.29)}{45.09} female - \underset{(12.71)}{169.81} black + \underset{(18.15)}{62.31} female\times black \] With \(n=4137\) and \(R^2=0.0858\).

The variable sat is the combined school average test (SAT) score, hsize is size of the student’s high school graduating class, in hundreds, female is a gender dummy variable, and black is a race dummy variable equal to one for black students and zero otherwise.

Question 5.9 a

Is there strong evidence that \(hsize^2\) should be included in the model? From this equation, what is the optimal high school size?

\[ \widehat{sat}= \underset{(6.29)}{1029.10} + \underset{(3.83)}{19.30} hsize - \underset{(0.53)}{2.19} hsize^2 - \underset{(4.29)}{45.09} female - \underset{(12.71)}{169.81} black + \underset{(18.15)}{62.31} female\times black \] With \(n=4137\) and \(R^2=0.0858\).

Question 5.9 b

Holding hsize fixed what is the estimated difference in SAT score between nonblack females and nonblack males? How statistically significant is this estimated difference?

\[ \widehat{sat}= \underset{(6.29)}{1029.10} + \underset{(3.83)}{19.30} hsize - \underset{(0.53)}{2.19} hsize^2 - \underset{(4.29)}{45.09} female - \underset{(12.71)}{169.81} black + \underset{(18.15)}{62.31} female\times black \] With \(n=4137\) and \(R^2=0.0858\).

Question 5.9 c

What is the estimated difference in SAT score between nonblack males and black males? Test the null hypothesis that there is no difference between their scores, against the alternative that there is a difference.

\[ \widehat{sat}= \underset{(6.29)}{1029.10} + \underset{(3.83)}{19.30} hsize - \underset{(0.53)}{2.19} hsize^2 - \underset{(4.29)}{45.09} female - \underset{(12.71)}{169.81} black + \underset{(18.15)}{62.31} female\times black \] With \(n=4137\) and \(R^2=0.0858\).

Question 5.9 d

What is the estimated difference in SAT score between black females and nonblack females? What would you need to do to test whether the difference is statistically significant?

\[ \widehat{sat}= \underset{(6.29)}{1029.10} + \underset{(3.83)}{19.30} hsize - \underset{(0.53)}{2.19} hsize^2 - \underset{(4.29)}{45.09} female - \underset{(12.71)}{169.81} black + \underset{(18.15)}{62.31} female\times black \] With \(n=4137\) and \(R^2=0.0858\).

Appendix

t table

df-\(\alpha/2\) 0.50 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.001 0.0005
1 0.000 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 318.31 636.62
2 0.000 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 22.327 31.599
3 0.000 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 10.215 12.924
4 0.000 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 7.173 8.610
5 0.000 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 5.893 6.869
6 0.000 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7 0.000 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4.785 5.408
8 0.000 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9 0.000 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 4.297 4.781
10 0.000 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 4.144 4.587
11 0.000 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 4.025 4.437
12 0.000 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055 3.930 4.318
13 0.000 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 3.852 4.221
14 0.000 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 3.787 4.140
15 0.000 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947 3.733 4.073
16 0.000 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921 3.686 4.015
17 0.000 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898 3.646 3.965
18 0.000 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.610 3.922
19 0.000 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.579 3.883
20 0.000 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845 3.552 3.850
21 0.000 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.527 3.819
22 0.000 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.505 3.792
23 0.000 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807 3.485 3.768
24 0.000 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.467 3.745
25 0.000 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787 3.450 3.725
26 0.000 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779 3.435 3.707
27 0.000 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771 3.421 3.690
28 0.000 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.408 3.674
29 0.000 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.396 3.659
30 0.000 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750 3.385 3.646
40 0.000 0.681 0.851 1.050 1.303 1.684 2.021 2.423 2.704 3.307 3.551
60 0.000 0.679 0.848 1.045 1.296 1.671 2.000 2.390 2.660 3.232 3.460
80 0.000 0.678 0.846 1.043 1.292 1.664 1.990 2.374 2.639 3.195 3.416
100 0.000 0.677 0.845 1.042 1.290 1.660 1.984 2.364 2.626 3.174 3.390
1000 0.000 0.675 0.842 1.037 1.282 1.646 1.962 2.330 2.581 3.098 3.300
Z 0.000 0.674 0.842 1.036 1.282 1.645 1.960 2.326 2.576 3.090 3.291

F table

df2-α=0.05 1 2 3 4 5 6 7 8 9 10
1.000 161.448 199.500 215.707 224.583 230.162 233.986 236.768 238.883 240.543 241.882
2.000 18.513 19.000 19.164 19.247 19.296 19.330 19.353 19.371 19.385 19.396
3.000 10.128 9.552 9.277 9.117 9.013 8.941 8.887 8.845 8.812 8.786
4.000 7.709 6.944 6.591 6.388 6.256 6.163 6.094 6.041 5.999 5.964
5.000 6.608 5.786 5.409 5.192 5.050 4.950 4.876 4.818 4.772 4.735
6.000 5.987 5.143 4.757 4.534 4.387 4.284 4.207 4.147 4.099 4.060
7.000 5.591 4.737 4.347 4.120 3.972 3.866 3.787 3.726 3.677 3.637
8.000 5.318 4.459 4.066 3.838 3.687 3.581 3.500 3.438 3.388 3.347
9.000 5.117 4.256 3.863 3.633 3.482 3.374 3.293 3.230 3.179 3.137
10.000 4.965 4.103 3.708 3.478 3.326 3.217 3.135 3.072 3.020 2.978
11.000 4.844 3.982 3.587 3.357 3.204 3.095 3.012 2.948 2.896 2.854
12.000 4.747 3.885 3.490 3.259 3.106 2.996 2.913 2.849 2.796 2.753
13.000 4.667 3.806 3.411 3.179 3.025 2.915 2.832 2.767 2.714 2.671
14.000 4.600 3.739 3.344 3.112 2.958 2.848 2.764 2.699 2.646 2.602
15.000 4.543 3.682 3.287 3.056 2.901 2.790 2.707 2.641 2.588 2.544
16.000 4.494 3.634 3.239 3.007 2.852 2.741 2.657 2.591 2.538 2.494
17.000 4.451 3.592 3.197 2.965 2.810 2.699 2.614 2.548 2.494 2.450
18.000 4.414 3.555 3.160 2.928 2.773 2.661 2.577 2.510 2.456 2.412
19.000 4.381 3.522 3.127 2.895 2.740 2.628 2.544 2.477 2.423 2.378
20.000 4.351 3.493 3.098 2.866 2.711 2.599 2.514 2.447 2.393 2.348
21.000 4.325 3.467 3.072 2.840 2.685 2.573 2.488 2.420 2.366 2.321
22.000 4.301 3.443 3.049 2.817 2.661 2.549 2.464 2.397 2.342 2.297
23.000 4.279 3.422 3.028 2.796 2.640 2.528 2.442 2.375 2.320 2.275
24.000 4.260 3.403 3.009 2.776 2.621 2.508 2.423 2.355 2.300 2.255
25.000 4.242 3.385 2.991 2.759 2.603 2.490 2.405 2.337 2.282 2.236
26.000 4.225 3.369 2.975 2.743 2.587 2.474 2.388 2.321 2.265 2.220
27.000 4.210 3.354 2.960 2.728 2.572 2.459 2.373 2.305 2.250 2.204
28.000 4.196 3.340 2.947 2.714 2.558 2.445 2.359 2.291 2.236 2.190
29.000 4.183 3.328 2.934 2.701 2.545 2.432 2.346 2.278 2.223 2.177
30.000 4.171 3.316 2.922 2.690 2.534 2.421 2.334 2.266 2.211 2.165
40.000 4.085 3.232 2.839 2.606 2.449 2.336 2.249 2.180 2.124 2.077
60.000 4.001 3.150 2.758 2.525 2.368 2.254 2.167 2.097 2.040 1.993
120.000 3.920 3.072 2.680 2.447 2.290 2.175 2.087 2.016 1.959 1.910
1000000000.000 3.841 2.996 2.605 2.372 2.214 2.099 2.010 1.938 1.880 1.831