IV

Paulo Fagandini

Nova SBE

Review

Review

2SLS estimator

Exercises

https://moodle.novasbe.pt/mod/folder/view.php?id=4021

Exercise 6.1

By how much taxes must be increased ot reach a certain reduction in cigarette consumption? Using the price elasticity for the demand, we are interested in estimating \(\beta_1\) in:

\[ \ln\left(Q_i^{cigarettes}\right)=\beta_0+\beta_1\ln \left(P_i^{cigarettes}\right)+u_i \]

where \(\ln \left(Q_i^{cigarettes}\right)\) is the number of cigarette packs per capita sold and \(\ln\left(P_i^{cigarettes}\right)\) is the after-tax average real price per pack of cigarettes in state \(i\). We use the data set \(CigarettesSW\) - data on cigarette consumption for the 48 continental US States in 1995.

Exercises 6.1

  1. Is it reasonable to use an OLS regression of log quantity on log price to estimate the price elasticity for the demand? Why?

Exercise 6.1

  1. Assume \(\ln \left(SalesTax_i\right)\) is used as an instrumental variable for the endogenous regressionr, \(\ln\left(P_i^{cigarettes}\right)\). \(\ln\left(SalesTax_i\right)\) is the portion of taxes on cigarettes arising from the general sales tax. Discuss the two conditions that need to be satisfied for \(\ln\left(SalesTax_i\right)\) to be a valid instrument.

Exercise 6.1

The output in the next slide presents estiamtes for three different specifications: 1. is a simple linear regression for the price elasticity; 2. is the first-stage of the 2SLS Estimator 3. the second stage of the 2SLS.

Exercise 6.1

Regression

Exercise 6.1

  1. How much of the observed variation in \(\ln\left(P_i^{cigarettes}\right)\) is explained by the instrument \(\ln\left(SalesTax_i\right)\) Relate the result with the concept of weak instrument.

Exercise 6.1

  1. Explain the difference between teh second-stage regression (3) and the SLR(1).

Exercise 6.1

  1. Interpret the coefficient for (3). Compare it with (1) and comment.

Exercise 6.1

  1. Intuitively, what do you point out as the main limitations of these models?

Appendix

t table

df-\(\alpha/2\) 0.50 0.25 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.001 0.0005
1 0.000 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 318.31 636.62
2 0.000 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 22.327 31.599
3 0.000 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 10.215 12.924
4 0.000 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 7.173 8.610
5 0.000 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 5.893 6.869
6 0.000 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7 0.000 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4.785 5.408
8 0.000 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9 0.000 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 4.297 4.781
10 0.000 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 4.144 4.587
11 0.000 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 4.025 4.437
12 0.000 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055 3.930 4.318
13 0.000 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 3.852 4.221
14 0.000 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 3.787 4.140
15 0.000 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947 3.733 4.073
16 0.000 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921 3.686 4.015
17 0.000 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898 3.646 3.965
18 0.000 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.610 3.922
19 0.000 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.579 3.883
20 0.000 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845 3.552 3.850
21 0.000 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.527 3.819
22 0.000 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.505 3.792
23 0.000 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807 3.485 3.768
24 0.000 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.467 3.745
25 0.000 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787 3.450 3.725
26 0.000 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779 3.435 3.707
27 0.000 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771 3.421 3.690
28 0.000 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.408 3.674
29 0.000 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.396 3.659
30 0.000 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750 3.385 3.646
40 0.000 0.681 0.851 1.050 1.303 1.684 2.021 2.423 2.704 3.307 3.551
60 0.000 0.679 0.848 1.045 1.296 1.671 2.000 2.390 2.660 3.232 3.460
80 0.000 0.678 0.846 1.043 1.292 1.664 1.990 2.374 2.639 3.195 3.416
100 0.000 0.677 0.845 1.042 1.290 1.660 1.984 2.364 2.626 3.174 3.390
1000 0.000 0.675 0.842 1.037 1.282 1.646 1.962 2.330 2.581 3.098 3.300
Z 0.000 0.674 0.842 1.036 1.282 1.645 1.960 2.326 2.576 3.090 3.291

F table

df2-α=0.05 1 2 3 4 5 6 7 8 9 10
1.000 161.448 199.500 215.707 224.583 230.162 233.986 236.768 238.883 240.543 241.882
2.000 18.513 19.000 19.164 19.247 19.296 19.330 19.353 19.371 19.385 19.396
3.000 10.128 9.552 9.277 9.117 9.013 8.941 8.887 8.845 8.812 8.786
4.000 7.709 6.944 6.591 6.388 6.256 6.163 6.094 6.041 5.999 5.964
5.000 6.608 5.786 5.409 5.192 5.050 4.950 4.876 4.818 4.772 4.735
6.000 5.987 5.143 4.757 4.534 4.387 4.284 4.207 4.147 4.099 4.060
7.000 5.591 4.737 4.347 4.120 3.972 3.866 3.787 3.726 3.677 3.637
8.000 5.318 4.459 4.066 3.838 3.687 3.581 3.500 3.438 3.388 3.347
9.000 5.117 4.256 3.863 3.633 3.482 3.374 3.293 3.230 3.179 3.137
10.000 4.965 4.103 3.708 3.478 3.326 3.217 3.135 3.072 3.020 2.978
11.000 4.844 3.982 3.587 3.357 3.204 3.095 3.012 2.948 2.896 2.854
12.000 4.747 3.885 3.490 3.259 3.106 2.996 2.913 2.849 2.796 2.753
13.000 4.667 3.806 3.411 3.179 3.025 2.915 2.832 2.767 2.714 2.671
14.000 4.600 3.739 3.344 3.112 2.958 2.848 2.764 2.699 2.646 2.602
15.000 4.543 3.682 3.287 3.056 2.901 2.790 2.707 2.641 2.588 2.544
16.000 4.494 3.634 3.239 3.007 2.852 2.741 2.657 2.591 2.538 2.494
17.000 4.451 3.592 3.197 2.965 2.810 2.699 2.614 2.548 2.494 2.450
18.000 4.414 3.555 3.160 2.928 2.773 2.661 2.577 2.510 2.456 2.412
19.000 4.381 3.522 3.127 2.895 2.740 2.628 2.544 2.477 2.423 2.378
20.000 4.351 3.493 3.098 2.866 2.711 2.599 2.514 2.447 2.393 2.348
21.000 4.325 3.467 3.072 2.840 2.685 2.573 2.488 2.420 2.366 2.321
22.000 4.301 3.443 3.049 2.817 2.661 2.549 2.464 2.397 2.342 2.297
23.000 4.279 3.422 3.028 2.796 2.640 2.528 2.442 2.375 2.320 2.275
24.000 4.260 3.403 3.009 2.776 2.621 2.508 2.423 2.355 2.300 2.255
25.000 4.242 3.385 2.991 2.759 2.603 2.490 2.405 2.337 2.282 2.236
26.000 4.225 3.369 2.975 2.743 2.587 2.474 2.388 2.321 2.265 2.220
27.000 4.210 3.354 2.960 2.728 2.572 2.459 2.373 2.305 2.250 2.204
28.000 4.196 3.340 2.947 2.714 2.558 2.445 2.359 2.291 2.236 2.190
29.000 4.183 3.328 2.934 2.701 2.545 2.432 2.346 2.278 2.223 2.177
30.000 4.171 3.316 2.922 2.690 2.534 2.421 2.334 2.266 2.211 2.165
40.000 4.085 3.232 2.839 2.606 2.449 2.336 2.249 2.180 2.124 2.077
60.000 4.001 3.150 2.758 2.525 2.368 2.254 2.167 2.097 2.040 1.993
120.000 3.920 3.072 2.680 2.447 2.290 2.175 2.087 2.016 1.959 1.910
1000000000.000 3.841 2.996 2.605 2.372 2.214 2.099 2.010 1.938 1.880 1.831