
Computing Profit-Maximizing Bid Shading Factors in
First-Price Sealed-Bid Auctions∗

Paulo Fagandini† Ingemar Dierickx‡

2022

This version of the article has been accepted for publication, after peer review but is not the Version of Record and does not reflect post-
acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s10614-022-10321-y.
Use of this Accepted Version is subject to the publisher’s Accepted Manuscript terms of use https://www.springernature.com/gp/open-
research/policies/accepted-manuscript-terms

Abstract

Computational methods are used to determine a profit-maximizing shading fac-
tor by which rational bidders shade their bid in first price sealed bid auctions for a
broad range of realistic scenarios when the prior is diffuse. Bidders’ valuations may
have both common value and firm-specific components, and the accuracy of their
estimates of the common value component may differ. In addition, we allow for a
subset of “naive” rivals, defined as bidders who do not account for the Winners’
Curse. Our computations show that profit-maximizing shading is greatly impacted
by asymmetries in the bidding population and, in particular, by the presence of
naive bidders. Failing to account for the presence of naive bidders results in under-
bidding only in one case, when facing a single rival who is naive, and in overbidding
in all other cases. Overbidding is particularly severe when the population of naive
competitors is large.

Keywords:Winner’s CurseAuctionsBiddingAsymmetric AgentsNaive Bidders.

1 Introduction

In this paper we address the problem that bidders face in first price sealed bid (FPSB)
auctions for common value goods: How much to shade their signals about the value
of the object being sold. Countless firms are grappling with this problem every day.
Two different disciplines, game theory and decision sciences, have taken totally different
approaches to this problem. Excellent reviews of the different approaches to auctions can
be found in Rothkopf (2007) and Lorentziadis (2016).
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We build upon the pioneering work of Rothkopf (1969) and Wilson (1984), who use
non-Bayes Nash equilibrium models. Like them, we work on the classical mineral rights
model, in which an indivisible good is auctioned in a first price sealed bid fashion among
competitive bidders, who produce an unbiased estimate about its value, unknown to
all of them at the moment of the auction. Like Hubbard et al. (2013); Hubbard and
Paarsch (2014), we propose a computational method to address a broad range of realistic
valuation and information scenarios. However, our paper differs in several aspects: 1) we
focus on a common value component instead of a private valuations, 2) we consider an
unbounded support for the signals, 3) we allow for naive bidders, and 4) we use a different
methodology that enables firms to submit bids that maximizes ex-ante expected profits.

Specifically, we derive first order conditions and compute a constant shading factor
(SF ) ex-ante of receiving the signal that (i) allows for a common value component as
well as a firm-specific component in valuations, (ii) allows for differences in the accuracy
of bidder signals, and (iii) allows for the introduction of non-rational bidders.1 In real
life, constant shading rules such as constant absolute markup and constant percentage
markup are commonly used. Shachat and Wei (2012) find that bids and prices in labo-
ratory experiments agree with game-theoretic predictions in English auctions, but not in
First Price Sealed Bid auctions, where constant shading strategies are used more often.
Rothkopf (1980), and Compte and Postlewaite (2012) provide discussions on why con-
stant strategies, and shading before observing the signal, should approximate Bayesian
equilibrium strategies when the prior is diffuse.2

To test whether the SF results in Bayes Nash equilibrium bids, we use as benchmark
the analytical solution to the symmetric problem with normally distributed noise Levin
and Smith (1991); Hoernig and Fagandini (2018),3 and find that the SF exactly replicates
those results when the prior is diffuse. In addition, to verify the SF in a broader range
of scenarios, we compared it with results from “brute force” Monte Carlo simulations. In
all cases, we found that results from the SF and “brute force” Monte Carlo simulations
coincide.

We also generalize Robert Wilson’s bias factor (BF ) to obtain a measure of the
Winner’s Curse. In short, the BF shades the bidder’s signal by the expected error of
the signal conditional on winning. Therefore, this correction allows the bidder to obtain
zero expected winning profits, avoiding the Winner’s Curse. To obtain positive expected
winning profits, shading must exceed the BF by some margin. This margin depends on
the number of rivals that a bidder is facing. The more bidders in an auction, the more
aggressive a bidder must be in order to have a chance at winning. However, the more
bidders in an auction, the more severe the Winner’s Curse, and therefore the bids should
be more conservative. Optimal shading should take into account both the Winners’ Curse
and the competitive effect (Thaler, 1988, p.192). To disentangle these two opposite effects
we consider the BF as that part of the SF that takes care of avoiding the Winner’s Curse,
while the remainder (SF −BF ) accounts for the competitive effect.4

1We use rational and sophisticated as equivalent terms. A naive bidder is a type of irrational bidder
whose behavior does not follow any profit maximization given all the available information. These can
use basic rules of thumb or other strategies. We assign a strategy to our naive bidder later in the text.

2As Heumann (2019) notes, because of its tractability the model studied by Wilson (1998) is often
used in empirical work. Diffuse priors are also considered in recent theoretical and empirical papers, e.g.
Vives (2011); Hong et al. (2013).

3Wilson (1969) derived the first explicit bidding function; however it was limited to only two symmetric
bidders.

4Hoernig and Fagandini (2018) decomposes the optimal shading as the expected value plus the dis-
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Finally, we allow for a subset of naive bidders, who follow a simple rule of thumb
and shade their signals by an arbitrary fixed amount. Dyer et al. (1989) posit that even
experienced bidders follow simple strategies when facing an auction that would work
only in invariant environments. While our model allows us to set any fixed shading for
these naive bidders we assume they are naive only in a limited sense, viz. that they do
not account for the Winner’s Curse. Specifically, we assume that naive bidders shade
their bids by (SF − BF ). That is, they do not account for the Winner’s Curse, but do
properly account for the competitive effect and analyze their impact on the optimal bids of
sophisticated bidders.5 The presence of naive bidders in real life bidding problems cannot
be denied. The notion of the Winner’s Curse was first discussed by three Atlantic Richfield
engineers in a study of field data in the oil industry Capen et al. (1971). The Winner’s
Curse cannot occur when all bidders act rationally Cox and Isaac (1984). However,
as Thaler (1988) stresses, bidding in a common value auction can be very challenging.
Occurrence of the Winner’s Curse in common value auctions has been acknowledged for
more than a half a century Kagel and Levin (2002), providing strong evidence for the
presence of naive bidders. Dyer et al. (1989) document that in laboratory experiments
even experienced executives in the construction industry, who are successful in their
jobs, suffer from the Winner’s Curse. They suggest that industry specific learning and
situation-specific rules of thumb, which could not be applied in a laboratory setting, may
help them avoid overbidding in the field. Furthermore, experienced contractors do suffer
unanticipated losses when bidding on a type of project they are not familiar with.6 These
findings indicate that in real life auctions it is not unlikely that a subset of bidders may
be naive. We find that failing to account for the presence of naive bidders results in
underbidding only in one case, when facing a single rival who is naive, and in overbidding
in all other cases. Losses due to overbidding are particularly severe when the population
of naive competitors is large.

The paper is organized as follows: Starting with Section 2 we present a brief literature
review for the main works related to this article. In Section 3 we present the model and
introduce the shading factor. In Section 4, we present the bias factor. In Section 5
we show how shading factors react to specific asymmetries in the bidding population.
Section 6 summarizes key conclusions and implications of our work and suggests avenues
for future research.

2 Literature Review

The game theory literature models auction outcomes as Bayes Nash equilibria. While
it offers valuable advice for auctioneers on auction design, it does not offer bidders a
practical methodology to compute optimal bids for a wide range of realistic scenarios.
Some papers, most notably Wilson (1967, 1969, 1977, 1998), Milgrom and Weber (1982a);
Levin and Smith (1991), and more recently Hoernig and Fagandini (2018) actually pin
down a bidding function for the bidders, but elegant analytical solutions are derived at
the cost of a good amount of simplifying assumptions that are rarely satisfied in real life.

persion index of the maximum error. While the first deals with the Winner’s Curse, the second accounts
for the competitive effect.

5The term naive is used in the same sense by Kagel and Levin (2002), and in a similar way in
Lorentziadis (2012).

6Thaler (1988) provides a very good review of laboratory and field studies that document the existence
of the Winner’s Curse.
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Another limitation of this literature is that theoretical results are usually derived
in models with uniformly additive noise, an assumption that is required to solve those
models analytically.7 In the applied literature, normal and log-normal distributions are
usually thought to be best suited to model real life problems. For example, electricity
markets are usually modeled with additive normal noise, while hydrocarbon reservoirs in
the petroleum industry are treated with a log-normal distribution.8

Although some game theoretical papers include asymmetries in the distributions of
the signal noise — e.g. Wilson (1998) — most of the literature assumes some symmetry
in at least one dimension, as well as rationality of all the bidders.9 These are important
limitations. While these assumptions are often necessary to ensure tractability of the
models, they are, as Armantier and Sbai (2006); Hubbard and Paarsch (2009); Hubbard
et al. (2013); Hubbard and Paarsch (2014) have pointed out, restrictive and not often
found in the real world. Furthermore, as we show in this paper, even small deviations
from these assumptions result in sharply different optimal bids.

Recently game theoretic papers have begun to model different degrees of sophistication
among the population of bidders. In particular, Eyster and Rabin (2005), with their
concept of Cursed Equilibrium, provide a new explanation for the Winner’s Curse. In
their model, some agents fail to take into account how information impacts the other
players’ strategies. The cursedness hypothesis indeed improves fitting laboratory data to
the models. However, this approach also suffers from simplifying assumptions common to
the theoretical literature: the use of uniform distributions (and bounded domains), and
the necessity to impose other symmetry assumptions, such as the degree of cursedness.

Crawford and Iriberri (2007) also study out-of-equilibrium models to explain bidders’
behavior that is inconsistent with the traditional Bayes Nash solution. In particular, they
apply the concept of Level-K Thinking (LK) introduced by Stahl and Wilson (1994, 1995).
That means that bidders are assumed to go through a limited number of K iterations
to reach a certain level of ‘best response’. Say, if there are two bidders, both bidders
assume a particular strategy by the other bidder. They best respond to that strategy.
Later, realizing that the other player could have followed the same reasoning, they decide
to best respond to the previous strategy. How many times they follow the reasoning of
best responding to the previous strategy is the value of “K.” The higher the number
of iterations K, the closer is the equilibrium to a Nash Equilibrium. Level-K Thinking
provides an explanation for overbidding in laboratory data in first price auctions, both in
common value and in independent-private-value scenarios. They estimate from the data
that the distribution of the Ks has the highest weights on L1 and L2.

Other avenues taken by the recent game theoretic literature on auction theory are fo-
cused on complex problems, such as auctions on divisible goods Wang and Zender (2002),
multi-unit auctions Hortaçsu and Puller (2008), ascending auctions Heumann (2019),
or uniform versus discriminatory auctions Fabra et al. (2006); Hortaçsu and McAdams
(2010). While these contributions do indeed study more intricate and more realistic sce-
narios, they do not provide a practical methodology enabling bidders to compute optimal
bids, which is the central aim of this paper.

7Notable literature reviews can be found in Klemperer (2004); Krishna (2010); Milgrom (2004); Salant
(2014).

8For example Crawford (1970), Smiley (1979).
9Following the literature, we use the term “symmetry” when referring to the distribution from where

the signals are drawn. To avoid confusion, we will use “heterogeneity” when referring to differences in
the the bidders’ level of sophistication.
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Decision theory has paid closer attention to the bidders’ problem. Since it is not,
in general, feasible to analytically derive the Bayes Nash equilibrium bidding strategies
in realistic scenarios, bidding strategies are optimized against a given distribution of
competitors’ bids relying mostly on Monte Carlo simulations.10 There are some early
decision theoretic and experimental contributions from the 50’s and the 60’s,11 there
are papers that address the bidders’ problem within the context of a specific industry,12

and there is a body of papers that propose computational methods. One computational
approach uses data from previous auctions and runs Monte Carlo simulations to determine
optimal bids. Key papers include David (1993), Wen and David (2001), Ma et al. (2005),
among others. In a second computational approach, data from earlier auctions are used to
estimate the moments of the distribution from which bidders’ signals are drawn, assuming
that the other bidders play Bayes Nash equilibrium strategies, and optimal bids are then
computed using classical symmetric models. Key papers include Bajari (1998), Bajari
and Hortaçsu (2005), Campo et al. (2003), among others.

Recent contributions to the literature on computational economics that look to ap-
proximate bidding functions in settings where analytical solutions are not feasible include
Hubbard and Paarsch (2009); Hubbard et al. (2013); Hubbard and Paarsch (2014). Hub-
bard and Paarsch (2009) use computational methods to characterize the bidding behavior
of asymmetric bidders in a setting where the auctioneer has a preference for some of those
bidders. Among other interesting results they are able to show how non-preferred bid-
ders bid more aggressively to remain competitive. Hubbard et al. (2013) use numerical
methods to approximate the inverse-bid functions in first price auctions with asymmet-
ric bidders, which allows the bidder to estimate the probability of winning conditional
on their bid. They find that low order polynomials perform poorly approximating the
bidding functions and use theoretical results about the crossing of the cumulative distri-
bution of valuations to assess the quality of this numerical approximation. Hubbard and
Paarsch (2014) expand this framework, including a wide set of extensions such as risk
aversion, collusion, among others, and analyze different algorithms such as the shooting
method (see Marshall et al. (1994)) and the projection methods (which encompass the
polynomials approach).

3 The Model

In this section, we introduce the model for the bidders’ behavior. We find the bidder’s
condition that maximizes profits, and use this to compute her best response. Next, we it-
erate over all the bidders to reach the equilibrium, i.e. when every bidders’ best response
coincides, within an arbitrary degree of tolerance, with its response in the previous iter-
ation.

Assume that there are n bidders, competing in a First Price Sealed Bid auction for
an item with unknown value µi = µ+∆i, where µ is the unknown common value part for
everyone, and ∆i represents a private value component. All bidders receive an unbiased
signal of their valuation for the auctioned object si = µi + ϵi, with ϵi independently
distributed N(0, σ2

i ).

10R. Wilson and M. Rothkopf are probably among the most prolific authors that actually looked at
both sides, game theory and decision sciences.

11For example Friedman (1956), Ortega Reichert (1968), among others.
12E.g. Capen et al. (1971).
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This specification allows us to consider bidder-specific valuation differences (∆i) and
differences in the accuracy of bidders’ signals (σ2

i ). Specifically, we allow for two groups
of bidders,13 whose members receive a signal drawn from the same family of distributions
but with different moments.14 These may stem from a variety of factors such as different
economies of scale, experience, technological factors, and so on. If ∆i = 0 for every bidder
we have a pure common value scenario.

We also allow for the presence of naive bidders as well as rational bidders. Rational
bidders choose ex-ante equilibrium bids against the population of - rational and/or naive
- opponents they are facing. The number of bidders, the distributions from which their
signals are drawn, and whether or not bidders account for the Winner’s Curse are common
knowledge. For now, consider that naive bidders shade by a given constant, and do not
optimize in the same way as the rational bidders do. Later on, we will allow for some
degree of sophistication of these naive bidders, and pin down this constant for comparative
statics and simulations.

Our model applies to two main cases: one with additive noise si = µ + ∆i + ϵi with
ϵi ∼ N(0, σ2

i ), the other with multiplicative noise si = µ∆iηi with ηi ∼ LN(0, σ2
i ). We

focus on the additive model, as the multiplicative model can be transformed into the
additive model by taking the natural logarithm.15

We look for ex-ante equilibrium bids among all the rational bidders. As in Wilson
(1998), we consider the case in which the prior is diffuse. In practical terms this means
that the signal and the standard deviation of the error capture all the information the
bidder has about the true value of the object when making the decision of how much to
bid.

Instead of simulating many scenarios we obtain equilibrium constant shading from
the first order conditions.16 This produces accurate estimates quickly and significantly
reduces demands on computing power.

Let ci be the shading applied by bidder i, for i = 1, 2, ..., n. That is, she submits a bid
bi = si−ci, and consequently, conditional on µ, her bids are distributed N(µ+∆i−ci, σ

2
i ).

13The analysis can be extended to three or more groups. However, 2 groups keeps the comparative
statistics parsimonious.

14Note however that, while the moments may differ, the nature (Normal or Log Normal) of the under-
lying distribution is the same for all bidders. This is consistent with the auction literature and reflects
the fact that the distribution of the error term is related to the characteristics of the auctioned item and
not to the characteristics of the bidders.

15An objection to a constant additive shading model is that it may appear unrealistic to apply the same
additive shading factor, say 2, in cases where the signals are as different as, say 5 and 100. Furthermore,
this specification does not guarantee a natural lower bound — zero — for bids. However, while we focus
on additive model, it is important to bear in mind that this specification includes the log transformation
of the multiplicative model, which does not suffer from any of those problems.

16i.e. instead of using Monte Carlo simulations. This process is briefly described in Appendix C
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The ex-ante expected profits for bidder i are:

Eµ,ϵi,ϵ−i
[πi] = Eµ,ϵi,ϵ−i

[
(µi − bi)

∏
j ̸=i

1bi>bj

]
=

= Eµ,ϵi,ϵ−i

[
(µ+∆i − (µ+∆i + ϵi − ci))

∏
j ̸=i

1µ+∆i+ϵi−ci>µ+∆j+ϵj−cj

]
=

= Eϵi

[
(ci − ϵi)

∏
j ̸=i

Fj(∆i − ci − (∆j − cj) + ϵi)

]
(1)

where fk(·) and Fk(·) are the density and cumulative distribution functions of ϵk for
k = 1, ..., n respectively. It is clear how from the ex-ante perspective, the common
component µ cancels out, and therefore the ex-ante expected profits do not depend on µ
nor on its prior distribution.17 The decision variable of bidder i is ci, the amount she will
shade her bid.

The shading factor for bidder i then is the ci that maximizes (1). A Nash Equilibrium
in pure strategies in shading factors is defined as:

Definition 1. Let there be M bidders, from which N ≤ M are rational bidders. Let ci be
the shading applied by each bidder. Fix the naive bidders’ shading at (cN+1, ..., cM). The
vector (c1, c2, ..., cN) is an equilibrium if, for a given (cN+1, ..., cM) and for all i from 1 to
N , it holds that:

ci ∈ argmax
ĉ

∫
R
fi(ϵi)(ĉ− ϵi)

(∏
j ̸=i

Fj(∆i − ĉ− (∆j − cj) + ϵi)

)
dϵi (2)

The shadings applied by the rational bidders in equilibrium {ci}N1 are called the Shading
Factors (SF).

Lemma 1. Considering the optimization problem of bidder i, its first order condition is:

∫
R
fi(ϵi)

(∏
j ̸=i

Fj(zij + ϵi)

)(
1− (ci − ϵi)

∑
j ̸=i

fj(zij + ϵi)

Fj(zij + ϵi)

)
dϵi = 0 (3)

where zij = ∆i − ci − (∆j − cj).

Proof. The proof can be found in Appendix B.

Computational methods are used to solve this problem. The steps for the algorithm
are as follows:

1. Assume that the initial shading for all the rational bidders is zero.

2. Find the optimal shading from the first order condition (3) for all the rational bid-
ders, assuming all the other rational bidders’ are shading according to the previously
assumed shading.

17Note the importance of the diffuse prior assumption for this result.
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3. Update the optimal shading for every rational bidder, using the values found in the
previous step.

4. Assess how much has the SF changed compared to the previous value.18 If some
bidder’s SF has changed more than a tolerance, iterate from (ii) using the updated
shadings found for the rational bidders. If not, these are the chosen Shading Factors.

We implemented this algorithm in both Octave and in Java, with equivalent results.

Figure 1: Convergence of optimal shading for all rational and symmetric bidders draw-
ing signals from a standard normal distribution. On the horizontal axis the number of
iterations it took, while on the vertical axis, the shading factor chosen in each iteration.

For cases where the standard deviation or the number of bidders is not too large, the
algorithm converges relatively fast, in the order of a couple of seconds, or 6 iterations for
2 rational symmetric bidders. Convergence plots are shown in Figure 1.19

In Figure 2 we plot the best response functions of two sophisticated bidders. We
also plot the 45 degree line to identify the equilibrium. Both are best responding at the
Shading Factor of approximately 1.77.

We benchmarked our results to the equilibrium bidding schedule as a function of
the signal for the symmetric problem with a diffuse prior. Wilson (1969) was the first

18We used as tolerance 10−4. This choice was arbitrary. We saw no further gains in precision to the
bias factors and shading factors for the distributions employed in our simulations, but this parameter
can be adjusted as required.

19We plot convergence on iterations instead of reporting time to convergence, which depends on the
particular hardware that is available to us.
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Figure 2: Best response of two symmetric and rational competitors, playing the equilib-
rium SF ≈ 1.77.
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to provide a solution to the Bayes Nash equilibrium problem with a diffuse prior for 2
symmetric bidders receiving normal additive noise. Wilson (1998), in a footnote, claims to
have proof that constant shading is also optimal with more than 2 bidders when the prior
is diffuse. Unfortunately, those proofs were not made public.20 Levin and Smith (1991),
and later Hoernig and Fagandini (2018), derived the Bayes Nash equilibrium bidding
function for the symmetric problem with n bidders and a diffuse Gaussian prior.21 Their
solution is linear and corresponds to:

b(s) = s− σ ×
(n(n− 1))−1 +

∫
Rwf(w)

2F (w)n−2dw∫
R f(w)

2F (w)n−2dw
(4)

where σ is the standard deviation of each bidder’s signal error. The shading factor
(SF ) coincides exactly with this analytical solution.22 This encouraging result establishes
that the SF is indeed optimal for the symmetric problem where all bidders are rational.
It does not, however, indicate whether the SF also produces optimal bids for asymmetric
auctions. To verify the SF in asymmetric scenarios as well as scenarios where some of
the bidders are naive — for which analytical solutions are not available — we verified
our equilibrium with “brute force” Monte Carlo simulations. We did that by generating
signals for the all the bidders; then, we applied the SF to all the rivals, and averaged
profits for the bidder. Finally, we looked for the shading that gave bidder i the highest
expected profits, when considering the others’ shadings fixed. This confirmed that the
SF was an equilibrium for a wide range of scenarios that may include valuation and
information asymmetries, as well as the presence of naive bidders. For the symmetric
case, we started with an arbitrary shading (different from the SF ) for each bidder, and
then iterating, as we did for the FOC, allowed us to obtain the equilibrium SF . The
estimates confirmed the SF obtained from the first order condition in (3).23

It is important to remark that we do not claim uniqueness of the equilibrium. We
do not prove convergence to the true solution, a common problem in research concerning
asymmetric first-price auctions in other computational approaches, as pointed out by
Hubbard et al. (2013). However, for all cases we tried, the algorithm converges, and that
suffices to obtain comparative statics, some of those will be described in Section 5.

4 The Bias Factor

A bidder in a first price sealed bid common value auction should take into account two
considerations that point in opposite directions: competition and the Winner’s Curse.
Increased competition implies that you must bid more aggressively to win the auction.
On the other hand, accounting for the Winner’s Curse requires bidders to bid more
cautiously as the number of bidders increases.

20In a private communication with the author we were informed that he does not have those proofs
anymore.

21Hoernig and Fagandini (2018) also find the solution for the non symmetric, but all rational, equilib-
rium as a linear function.

22Tried for several symmetric and all-rational bidders drawing signals from a standard normal distri-
bution.

23On Appendix C we describe the Monte Carlo simulations and show some histograms for the estimates
for a couple of symmetric bidder scenarios and also for a couple of scenarios with asymmetric bidders.
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The bias factor (BF ) introduced by Wilson (1984) — and revisited by Cramton (1995)
— enables us to disentangle these two effects.

The BF indicates by how many standard deviations the signal received by the winner
exceeds her true value of the auctioned item.

BFi =
E[εi|win]

σi

(5)

For the symmetric case considered by Wilson, the BF corresponds to the expected
signal error conditional on winning divided by the standard deviation.24 Applying the
(additive) bias factor to the signal ensures that the adjusted signal ŝi is unbiased condi-
tional on winning:

ŝi = si −BFi × σi

E[ŝi|win] = µ+∆i

Shading signals by the bias factor, i.e. bi = ŝi, results in zero expected winning profits.
Thus, the BF given c−i can be computed by solving

∫
R
fi(ϵi)(ci − ϵi)

(∏
j ̸=i

Fj(∆i − ci − (∆j − cj) + ϵi)

)
dϵi = 0 (6)

Bidders BF Prob. Win

2 0.56 0.500
3 0.85 0.333
4 1.03 0.250
5 1.16 0.200
6 1.27 0.167
7 1.35 0.143
8 1.42 0.125

Table 1: Bias factors as found by Wilson (1984) for symmetric bidders. ϵi ∼ N(0, 1).

With asymmetric bidders, the bias factor is no longer the highest order statistic of the
signal error. As asymmetries impact the severity of the Winner’s Curse, the bias factor
is now different for each bidder.

We find that the classical results in the literature for the Winner’s Curse Capen et al.
(1971); Rothkopf (1969); Wilson (1967); Kagel and Levin (2002) hold. The Winner’s
Curse effect is stronger — and the bias factor is correspondingly larger — when the

24Wilson divided by σ just to have a result that was scale-independent.
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number of rivals is greater (Table 1), when rivals have an intrinsic firm-specific valuation
advantage, and when the bidders’ signals are less accurate. We also find that the bias
factor increases sharply when some rivals are naive. Intuitively, it is clear that winning
against a naive bidder, who does not account for the Winner’s Curse, would be “worse
news” than winning against a rational bidder; therefore one would expect that a larger
adjustment is required to avoid the Winner’s curse. However, the sheer magnitude of this
effect is unexpected — particularly when there are two or more naive rivals (See Figure
8 in the Appendix).

While the bias factor is by no means a tool to generate optimal bids, it is useful
in three very important ways. First, it provides a lower bound for optimal shading.
Second, it enables us to isolate the Winner’s Curse effect, which helps to explain why
bids do not change monotonically in the number of bidders, a fact that might at first seem
surprising. We do that by computing the BF for a bidder facing competitors who use
the correct SF . The SF , as we mentioned earlier, encompasses two effects, the Winner’s
Curse and competition. By isolating the Winner’s Curse with the BF , we can obtain the
competitive effect (CF = SF − BF ), which describes the trade-off between the gains in
case of winning, and the probability of beating the other bidders. This is shown later
in Table 2. Third, the bias factor enables us to suggest a plausible candidate for bids
submitted by naive bidders; in turn this makes it possible to assess the impact of naive
bidders on the bids — and expected profits — of rational bidders. These issues are taken
up in Section 5 below.

5 Simulations and Predictions

In this section we first examine the shading factor in a few simple cases to verify whether
our methodology produces results that are in accord with the standard results in the
literature. Subsequently, we analyze the impact of valuation asymmetries (firm-specific
valuation differences), information asymmetries (some bidders receiving a noisier signal
than others), and the presence of naive bidders on equilibrium bidding strategies.

5.1 Rational Symmetric Bidders

In this subsection, we consider the symmetric all-rational model to verify consistency with
predictions in the literature. Examining the SF , winning profits and the probability
of winning for different numbers of bidders (N) and different levels of noise in their
signals, confirms that our model reproduces standard results for a population of rational
symmetric bidders.

For example, our results corroborate the intuition that the BF is a lower bound to the
SF , and that the SF approaches the BF as the number of bidders increases, implying
zero expected profits when bidders approach infinity, in accordance with the literature.25

Table 2 shows an interesting pattern in the SF for a symmetric all-rational auction
when signals are drawn from a standard normal distribution.

25For example, the analytical solution Hoernig and Fagandini (2018), coinciding with all our sim-
ulations, allows to compute the symmetric values for 50 (BF = 2.25, CF = 0.10, SF = 2.34), 100
(BF = 2.51, CF = 0.07, SF = 2.58), and even 10,000 (BF = 3.85, CF = 0.02, SF = 3.88) bidders.
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Bidders BF CF SF Exp. Winning Profits Prob. Win

2 0.17 1.60 1.77 1.21 0.50
3 0.43 1.08 1.51 0.66 0.33
4 0.62 0.89 1.51 0.48 0.25
5 0.76 0.79 1.55 0.38 0.20
6 0.87 0.73 1.60 0.33 0.17
7 0.96 0.68 1.64 0.29 0.14
8 1.04 0.65 1.69 0.26 0.13
9 1.49 0.24 1.73 0.24 0.11
10 1.54 0.24 1.73 0.24 0.10

Table 2: Correction for symmetric bidders with ϵi ∼ N(0, 1).

Figure 3: Decomposition of the shading factor in the Winner’s Curse and the competitive
effect. Symmetric bidders with ϵi ∼ N(0, 1).

As the number of bidders increases, the probability of winning and expected winning
profits monotonically both decline, as they should. However, there appears to be an
anomaly in the SF : the amount by which bidders shade their bids first decreases when
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N goes from 2 to 4, and then steadily increases from there on.26 As suggested earlier
in this paper, this non-monotonic pattern is the result of two effects working in opposite
directions. As a bidder faces more rivals, (i) the Winner’s Curse looms larger, which
requires a larger adjustment of her signal, and (ii) competition increases, which requires
her to bid closer to her signal, i.e. to sacrifice margin for a higher probability of winning.
Initially, the competition effect dominates. With 2 bidders, low rivalry results in bidders
shading their bids substantially; as the number of bidders gets larger, increasing rivalry
leads them to bid closer to their valuation. With more than 4 bidders, however, the need
to compensate for the Winner’s Curse becomes the dominant effect, driving lower bids
as the number of bidders increases.

Table 3 shows the impact of all bidders having less accurate signals, for a fixed number
of bidders. As expected, the adjustment implied by the shading factor increases. It is
interesting to note that in equilibrium profits increase when bidders have less accurate
signals.

σ SF Winning Profits

0.5 0.75 0.24
0.7 1.05 0.33
0.9 1.36 0.43
1.1 1.66 0.53
1.3 1.96 0.62
1.5 2.26 0.72

Table 3: SF for 4 rational bidders. ϵi ∼ N(0, σ).

This result is consistent with a general finding that the efficiency of auctions increases
as bidders’ information (symmetrically) improves. For example, in a very different model
Milgrom and Weber (1982b) analyze various information policies and show that auction-
eer revenues increase when bidders are provided better information.

5.2 Valuation Asymmetries

We consider two groups of bidders. The valuation of Group I is held constant, whereas the
valuation advantage parameter (∆II) of Group II is varied. Throughout this subsection,
both groups receive signals with errors generated N(0, 1).

First we examine the case with two sophisticated bidders. Starting from the symmetric
case where ∆II = 0, we progressively increase the mean of the distribution for Group II
(i.e. ∆II). Remember that ∆II is assumed to be common knowledge.

When there is no valuation asymmetry, both bidders obviously shade the same. As
the valuation asymmetry increases we observe that the bidder with the lower valuation
is shading less while the bidder with the higher valuation is shading more. The valuation
advantage provides space for the high-valuation bidder to increase profits by shading

26This finding was confirmed also with Monte Carlo simulations to rule out potential coding issues.
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(a) 1 vs. 1 (b) 2 vs. 1

(c) 2 vs. 2 (d) 2 vs. 2, larger valuation gaps

Figure 4: Valuation asymmetry between two groups, Group I (low valuation) and Group
II (high valuation)), of sophisticated bidders.

more without reducing too much her probability of winning. The low-valuation bidder,
who knows that his rival is shading more, thus reducing the risk of the Winner’s Curse,
is able to bid more aggresively, as can be seen from the decreasing SF .

The picture changes dramatically when we have multiple high valuation bidders. In
Figure 4c and 4d we observe that Group I always shades more (i.e. bids less) than Group
II, and increasingly so as the valuation asymmetry increases. This makes sense: com-
petition amongst high-valuation bidders in Group II requires low valuation bidders in
Group I to bid prudently to avoid the Winner’s Curse. We also note a very interest-
ing phenomenon: the pattern for Group II is non-monotonic in its valuation advantage.
Initially, for small valuation asymmetries the shading factor declines (reaching a mini-
mum at about 0.4× σ) and then increases. As can be seen in Figure 4d, when valuation
differences become very large the Shading Factor converges to the value for an auction
with only two high-valuation bidders (about 1.77). The increasing valuation gap com-
bined with vigorous competition within Group II requires Group I bidders to bid more
cautiously to avoid the Winner’s Curse. Put simply, when valuation differences become
large, bidders in Group I become largely irrelevant, approaching a symmetric scenario
with only high-valuation bidders.

Hubbard and Paarsch (2009) study a related but different problem, viz. bidding
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behavior in procurement auctions with private valuations when the auctioneer has a
preference for qualified firms and follows a policy of scaling down their bids for the purpose
of bid evaluation. This policy has three effects: first, preferred firms may inflate their
bids yet still win the auction; second, non-preferred firms may bid more aggressively, and
third, participation may be affected as well. These interesting results are consistent with
auction theory. Since asymmetries lower the auctioneer’s revenue, a policy that artificially
amplifies a bidder’s advantage is counterproductive. In horse races, the favorite horse
gets a handicap, not a head start. Similarly in auctions, an optimal policy discriminates
against favored bidders to neutralize symmetric advantages.

5.3 Signal Quality

Information asymmetries have been widely studied in the context of bidding for oil and
gas leases on the Outer Continental Shelf, among others. As Hendricks and Porter (2007)
put it:

Oil and gas leases are classified into two categories. Wildcat tracts are lo-
cated in previously unexplored areas. Prior to a wildcat auction, firms are
allowed to conduct seismic studies, but they are not permitted to drill any
exploratory wells. The seismic studies provide noisy, but roughly equally in-
formative signals about the amount of oil and gas on a lease. We argue that
wildcat auctions are likely to satisfy the symmetry assumption on the signal
distribution. Drainage leases are adjacent to wildcat tracts where oil and gas
deposits have been discovered previously. Firms that own adjacent tracts pos-
sess drilling information that makes them better informed about the value of
the drainage tract than other firms, who are likely to have access only to seis-
mic information. We argue that these auctions can be modeled by assuming
one bidder has a private, informative signal and all other bidders have no
private information.

We assume that while bidders in Group I receive estimates with error N(0, 1), bidders
on Group II receive signals with error N(0, σ). To focus on the effect of the quality of the
signal only, we assume that ∆I = ∆II = 0. Starting with σ = 1, we progressively improve
Group II’s signal quality — decreasing the standard deviation on their signal’s error —
to study the impact of an increasing information asymmetry. Note in the horizontal axis,
that a decreasing value implies a better signal quality for Group II.

Figure 5a shows that for the case of one less-informed bidder competing against one
better-informed rival, both bidding schedules roughly coincide. In equilibrium, the better-
informed bidder shades her bid just enough to get close to her less-informed rival. Hen-
dricks et al. (1994) obtain a similar result in a somewhat different common value auction
where one uninformed bidder, who only observes a public signal, competes with one
informed bidder who also observes a private signal of the true value.27

However, this result only holds in this one particular case, where one less-informed
bidder is bidding against one better-informed rival. In all other cases, where there are
more than two bidders, the bidding schedules no longer coincide, as can be seen in Figures
5b and 5c. Hendricks et al. (1994) argue that in the case studied — bidding for OCS
oil and gas leases — informed bidders collude so that they can effectively be thought

27See also Porter (1995), and Hendricks and Porter (2007).
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(a) 1 vs. 1 (b) 2 vs. 1

(c) 1 vs. 2

Figure 5: Information asymmetry between two groups, Group I (noisier estimate) and
Group II (better estimate), of sophisticated bidders.

of as a single informed bidder. As for uninformed bidders, Porter (1995) points out
that modelling a single uninformed bidder is irrelevant, as the equilibrium distribution
function will be concerned only with the distribution of the highest bid among of the
uninformed bidders. The author correctly identifies that the strategy of the informed
bidders depend on the number of uninformed bidders.

In our setup, the number of uninformed bidders is unimportant only if they have
no private information at all, which is a strong assumption. In our model, less-informed
bidders do have a private signal of the true value, albeit a less accurate one, and therefore
the number of less-informed bidders does matter, as can be seen from the different bidding
schedules in Figure 5b.

In Figure 5c we see the impact of multiple better-informed bidders: increasingly
aggressive bids from better-informed rivals force the poorly informed bidder to bid very
cautiously.

Figure 6 shows that expected profits of a less-informed bidder who competes with
better-informed rivals decline precipitously as the latter’s information advantage in-
creases. Note that they are not zero, however. This because in our model, the less-
informed bidder does have a private signal of the true value, albeit a less accurate one.
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Figure 6: 1 bidder in G I (noisier estimate) vs. 2 bidders in G II (better estimate)
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5.4 Naive Bidders

In this section we illustrate the effects of naive bidders on equilibrium bidding and ex-
pected profits of a sophisticated bidder. To isolate the impact of naive bidders, we assume
no valuation or information advantages for any bidder.

As defined in this paper, naive bidders are aware that they need to shade somehow
their bids in order to obtain positive profits. Evidence Kagel and Levin (2002) suggests
that even experienced bidders use various rules of thumb. While our model allows us
to use any shading rule for naive bidders we decided to endow naive bidders with a
fair amount of sophistication. Specifically, we assume that they correctly account for
the competitive effect, they are naive only in the sense that they do not adjust for the
Winner’s Curse. That is, naive bidders shade their bids by the Competitive Factor
CF ≡ SF −BF .

Number of Naive Rivals
0 1 2 3 4 5

N
u
m
b
er

of
R
iv
al
s

1 0.61 0.52
2 0.22 0.15 0.10
3 0.12 0.08 0.04 0.02
4 0.08 0.05 0.02 0.01 0.00
5 0.06 0.03 0.02 0.01 0.00 0.00

Table 4: Expected profits for sophisticated bidders. ϵi ∼ N(0, 1).

CF

N
u
m
b
er

of
R
iv
al
s

1 1.60
2 1.08
3 0.89
4 0.79
5 0.73

Table 5: Shading applied by the naive bidders, i.e. the Competitive Factor CF , in the
scenarios of Table 4.

For a sophisticated bidder, facing naive rivals is bad news. Table 4 shows the different
dimensions in which naive rivals can impact the profits of sophisticated bidders, and the
naive rivals’ margin.

In each column, the number of naive rivals is kept constant while the total number
of competitors — hence the number of sophisticated bidders — varies. Moving down in
any column shows the competitive pressure of rational competitors.

Moving along the diagonal shows competitive pressure of naive competitors: profits
vanish extremely fast when their number increases. The devastating impact of naive rivals
is due to the fact that they ignore the Winner’s Curse and therefore shade less when they
are facing more competitors, as can be seen in table 5.
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Figure 7: Optimal shading when all competitors are rational vs. one is naive.

Figure 7 shows Shading Factors for two cases: when all rivals are rational (square
marks) and when one of the rivals is naive (round marks). When facing only one rival,
one should bid more aggressively (i.e. shade less) when this rival is naive instead of
rational. When facing only one rival, concerns about the Winner’s Curse — which in this
case is relatively weak — are dominated by the more aggressive bid from a naive rival.
With more rivals, the opposite holds: concerns about the Winner’s Curse dominate the
impact of increased competition. This is because a naive bidder, as shown in Table 5,
bids more aggressively when facing more competitors; in turn, this aggressive bidding
behavior aggravates the Winner’s Curse, requiring a more cautious bid to guard against
it. Thus, as Figure 7 shows, failing to account for the presence of a naive bidder results
in underbidding only in one case, when facing one opponent, and overbidding in all the
other cases.

6 Conclusions and Implications

In this paper, we compute a shading factor (SF ) to obtain optimal bids in first price
sealed bid common value auctions. The SF is computed ex-ante of receiving a signal,
does not require a bounded support of either signals or bids, allow for differences in the
accuracy of bidders’ estimates, as well as firm-specific valuation differences. Furthermore,
the SF also allow for (a subset of) naive bidders, who fail to account for the Winner’s
Curse.
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We find that the SF generates the same bid as the Bayes Nash equilibrium with n
symmetric bidders and a diffuse Gaussian prior found in Hoernig and Fagandini (2018).
For asymmetric scenarios, the values generated by the SF are confirmed by “brute force”
Monte Carlo simulations. These results validate the proposed approach and confirm that
it does indeed reliably compute optimal bids for a wide range of scenarios, that may
include valuation and information asymmetries, as well as the presence of naive bidders.

We also generalize Wilson’s (1984) Bias Factor (BF ) to obtain a measure of the Win-
ner’s Curse effect, allowing us to disentangle the SF ’s shading in two parts: the Winner’s
Curse effect, and the competitive effect. Even though the interplay of different dimen-
sions of bidder heterogeneity may lead to surprising shadings that are not monotonic in
the number of bidders, all results can be understood intuitively by analyzing how those
two effects which work in opposite directions, affect bids.

The BF also enables us to suggest a plausible candidate for bids submitted by naive
bidders and to assess their impact on the expected profits of sophisticated bidders. Our
results show that this impact is devastating. Hence, a critical task in real life bidding
problems is to correctly gauge the level of sophistication of one’s competitors. Absent
specific information, it may be better to underestimate their capacities — and shade
one’s bid accordingly — rather than overestimate them and fall victim to the Winner’s
Curse. This, of course, opens a Pandora’s box of tactical opportunities, since it would
be advantageous for a sophisticated bidder to be perceived as naive. Given that bidders
in real life do not know each other’s type (rational or naive) with certainty, this opens
up an interesting line of inquiry into the incentives for sophisticated bidders to pose as
naive. Savvy rational bidders may wish to cultivate an image of being unsophisticated!
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Appendix A Effect of naive competitors on the Win-

ner’s Curse

Figure 8: Bias factor for an increasing number of bidders. In one group only one of the
bidders is rational (solid) and in the other, all bidders are rational (dashed).
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Appendix B Proof of Lemma 1

As stated in the main text, the Shading Factors satisfy the following:

ci ∈ argmax
ĉ

∫
R
fi(ϵi)(ĉ− ϵi)

(∏
j ̸=i

Fj(∆i − ĉ− (∆j − cj) + ϵi)

)
dϵi (7)

Take the derivative with respect to ci and set it equal to zero:

∂

∂ci

[∫
R
fi(ϵi)(ci − ϵi)

(∏
j ̸=i

Fj(∆i − ci − (∆j − cj) + ϵi)

)
dϵi

]
= 0 (8)

Noting that fi(ϵi) does not depend on ci, solve:

∫
R
fi(ϵi)

∂

∂ci

[
(ci − ϵi)

(∏
j ̸=i

Fj(∆i − ci − (∆j − cj) + ϵi)

)]
dϵi = 0 (9)

The derivative corresponds to the addition of two terms:

∂

∂ci
[(ci − ϵi)]

(∏
j ̸=i

Fj(∆i − ci − (∆j − cj) + ϵi)

)
+ . . . (10)

(ci − ϵi)
∂

∂ci

[(∏
j ̸=i

Fj(∆i − ci − (∆j − cj) + ϵi)

)]
(11)

It is clear that (10) is equal to:

(∏
j ̸=i

Fj(∆i − ci − (∆j − cj) + ϵi)

)

Finally, to solve (11) let’s focus for now on the term:

∂

∂ci

[∏
j ̸=i

Fj(∆i − ci − (∆j − cj) + ϵi)

]
=

−
∑
j ̸=i

(
fj(∆i − ci − (∆j − cj) + ϵi)

∏
k ̸=j,i

Fk(∆i − ci − (∆k − ck) + ϵi)

)

Multiplying and dividing by Fj(∆i − ci − (∆j − cj) + ϵi) we obtain

−
∑
j ̸=i

(
fj(∆i − ci − (∆j − cj) + ϵi)

Fj(∆i − ci − (∆j − cj) + ϵi)

∏
k ̸=i

Fk(∆i − ci − (∆k − ck) + ϵi)

)
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Note that the product does not depend on j, so it can go out of the summation:

−

(∏
k ̸=i

Fk(∆i − ci − (∆k − ck) + ϵi)

)(∑
j ̸=i

fj(∆i − ci − (∆j − cj) + ϵi)

Fj(∆i − ci − (∆j − cj) + ϵi)

)

So the third term, replacing k with j, corresponds to:

−(ci − ϵi)

(∏
j ̸=i

Fj(∆i − ci − (∆j − cj) + ϵi)

)(∑
j ̸=i

fj(∆i − ci − (∆j − cj) + ϵi)

Fj(∆i − ci − (∆j − cj) + ϵi)

)

Finally, to obtain the full expression, apply the change of variables zi = ∆i − ci −
(∆j − cj), to obtain:

(∏
j ̸=i

Fj(zij + ϵi)

)
− (ci − ϵi)

(∏
j ̸=i

Fj(zij + ϵi)

)(∑
j ̸=i

fj(zij + ϵi)

Fj(zij + ϵi)

)

Replacing back into the integral in (9) we have:

∫
R
fi(ϵi)

(∏
j ̸=i

Fj(zij + ϵi)

)(
1− (ci − ϵi)

∑
j ̸=i

fj(zij + ϵi)

Fj(zij + ϵi)

)
dϵi = 0 (12)

This is the first order condition.
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Appendix C Monte Carlo method

We benchmarked the Shading Factor in some cases using Monte Carlo simulations, as
set out below:

Generate signals randomly for the number of bidders, in a matrix of size n×m. Each
column represents a bidder, and each row a draw. Define an interval in which to look
for the equilibrium. Apply the shading to the competitors and test shading within that
interval and up to 2 decimal places, and pick the one with the highest expected profit.

This procedure has limitations. First, we are taking a fixed number of shadings within
a bounded and fixed interval; however, given the results obtained using the first order
condition, we can use intervals easily wide enough to give reasonable assurances that
it includes the optimum. Second, this procedure is inefficient, as it tries every single
possibility within that set. However, this procedure also has important advantages. It
can deal with any trouble embedded functions might have and it is agnostic about the
curvature of the expected profits functions (does not assume differentiability or a unique
maximum within the interval).

We plot the histograms of the estimates of specific simulations.28 Each SF in the
sample, consists on the equilibrium shading that maximizes expected profits using 100.000
hypothetical draws for each bidder. We do this 500 times to obtain the sample of optimal
factors we include in the histograms shown below. We use a tolerance of 0.01 for each
optimal factor and a maximum of iterations (over best responses) of 50 times. In all these
samples, the algorithm converged (within tolerance) every time.

(a) Bidder 1, mean ŜF 1 = 1.7621. (b) Bidder 2, mean ŜF 2 = 1.7632.

Figure 9: Two sophisticated bidders, both with signals N(0, 1). The SF is 1.77 for both.

28Code available at https://tinyurl.com/yc39rbzx.
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(a) Bidder 1, mean ŜF 1 = 1.5075 (b) Bidder 2, mean ŜF 2 = 1.5091

(c) Bidder 3, mean ŜF 3 = 1.5069 (d) Bidder 4, mean ŜF 4 = 1.5066

Figure 10: Four sophisticated bidders, with signals N(0, 1). The SF = 1.51 for all.
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(a) Bidder 1, mean ŜF 1 = 1.6141 (b) Bidder 2, mean ŜF 2 = 2.1347

Figure 11: Two sophisticated bidders, one with signals N(0, 1), the other with signals
N(1, 1). The true corrections are SF = 1.62 and SF = 2.14 respectively.

(a) Bidder 1, mean ŜF 1 = 1.4069 (b) Bidder 2, mean ŜF 2 = 1.4084

Figure 12: Two sophisticated bidders, one with signals N(0, 1), the other with signals
N(0, 0.5). The true correction is 1.40 for both.
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